418 research outputs found

    The open XXX spin chain in the SoV framework: scalar product of separate states

    Full text link
    We consider the XXX open spin-1/2 chain with the most general non-diagonal boundary terms, that we solve by means of the quantum separation of variables (SoV) approach. We compute the scalar products of separate states, a class of states which notably contains all the eigenstates of the model. As usual for models solved by SoV, these scalar products can be expressed as some determinants with a non-trivial dependance in terms of the inhomogeneity parameters that have to be introduced for the method to be applicable. We show that these determinants can be transformed into alternative ones in which the homogeneous limit can easily be taken. These new representations can be considered as generalizations of the well-known determinant representation for the scalar products of the Bethe states of the periodic chain. In the particular case where a constraint is applied on the boundary parameters, such that the transfer matrix spectrum and eigenstates can be characterized in terms of polynomial solutions of a usual T-Q equation, the scalar product that we compute here corresponds to the scalar product between two off-shell Bethe-type states. If in addition one of the states is an eigenstate, the determinant representation can be simplified, hence leading in this boundary case to direct analogues of algebraic Bethe ansatz determinant representations of the scalar products for the periodic chain.Comment: 39 page

    On determinant representations of scalar products and form factors in the SoV approach: the XXX case

    Full text link
    In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoV) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXXXXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.Comment: 46 page

    Long-distance asymptotic behaviour of multi-point correlation functions in massless quantum models

    Full text link
    We provide a microscopic model setting that allows us to readily access to the large-distance asymptotic behaviour of multi-point correlation functions in massless, one-dimensional, quantum models. The method of analysis we propose is based on the form factor expansion of the correlation functions and does not build on any field theory reasonings. It constitutes an extension of the restricted sum techniques leading to the large-distance asymptotic behaviour of two-point correlation functions obtained previously.Comment: 25 page

    A Preliminary Note On The Development Of Certain Lenticels

    Get PDF
    n/

    Regular quantum graphs

    Full text link
    We introduce the concept of regular quantum graphs and construct connected quantum graphs with discrete symmetries. The method is based on a decomposition of the quantum propagator in terms of permutation matrices which control the way incoming and outgoing channels at vertex scattering processes are connected. Symmetry properties of the quantum graph as well as its spectral statistics depend on the particular choice of permutation matrices, also called connectivity matrices, and can now be easily controlled. The method may find applications in the study of quantum random walks networks and may also prove to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure

    Domain wall partition functions and KP

    Full text link
    We observe that the partition function of the six vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP tau function and express it as an expectation value of charged free fermions (up to an overall normalization).Comment: 16 pages, LaTeX2

    On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain

    Get PDF
    We consider the problem of computing form factors of the massless XXZ Heisenberg spin-1/2 chain in a magnetic field in the (thermodynamic) limit where the size M of the chain becomes large. For that purpose, we take the particular example of the matrix element of the third component of spin between the ground state and an excited state with one particle and one hole located at the opposite ends of the Fermi interval (umklapp-type term). We exhibit its power-law decrease in terms of the size of the chain M, and compute the corresponding exponent and amplitude. As a consequence, we show that this form factor is directly related to the amplitude of the leading oscillating term in the long-distance asymptotic expansion of the two-point correlation function of the third component of spin.Comment: 28 page

    Emptiness formation probability of the XXZ spin-1/2 Heisenberg chain at Delta=1/2

    Full text link
    Using a multiple integral representation for the correlation functions, we compute the emptiness formation probability of the XXZ spin-1/2 Heisenberg chain at anisotropy Delta=1/2. We prove it is expressed in term of the number of alternating sign matrices.Comment: 5 page

    Of global reach yet of situated contexts: an examination of the implicit and explicit selection criteria that shape digital archives of historical newspapers

    Get PDF
    A large literature addresses the processes, circumstances and motivations that have given rise to archives. These questions are increasingly being asked of digital archives, too. Here, we examine the complex interplay of institutional, intellectual, economic, technical, practical and social factors that have shaped decisions about the inclusion and exclusion of digitised newspapers in and from online archives. We do so by undertaking and analysing a series of semi-structured interviews conducted with public and private providers of major newspaper digitisation programmes. Our findings contribute to emerging understandings of factors that are rarely foregrounded or highlighted, yet fundamentally shape the depth and scope of digital cultural heritage archives and thus the questions that can be asked of them, now and in the future. Moreover, we draw attention to providers’ emphasis on meeting the needs of their end-users and how this is shaping the form and function of digital archives. The end user is not often emphasised in the wider literature on archival studies and we thus draw attention to the potential merit of this vector in future studies of digital archives
    • …
    corecore