407 research outputs found
Inflammatory signalling in postoperative cognitive dysfunctions
Major surgeries, such as cardiac or orthopaedic procedures in particular, expose the
patient to extensive trauma, blood loss, and tissue injury; all of these factors
effectively modulate the immune system to ultimately trigger an inflammatory
response. Postoperative cognitive dysfunction (POCD), the condition being
characterized by impairment of short and long-term memory, is one of common
complicates following surgery. Recently, our data have demonstrated that
neuroinflammation and microglia activation in the hippocampus following surgery are
associated with cognitive decline.
The aim of this thesis is to investigate the inflammatory signaling pathways
specifically involved with POCD, with a particular interest between systemic
inflammation and local inflammation in the brain following surgery.
The data presented in this thesis introduce the general concepts and the involvement
of inflammation in the etiology of cognitive dysfunctions using a mouse model of
POCD. Upon the identification of specific pro-inflammatory markers both
systemically and centrally and the delineation of the time course of events that
characterize the inflammatory response following aseptic orthopaedic surgery, I
describe how specific cellular signal pathways interact, mediate, and sustain this
response. Following an initial non-specific approach using a general anti-inflammatory
compound to identify whether inflammation plays a role in this
scenario, I have exploited this model into a wide range of knockouts animals in the
attempt of identifying specific signaling mechanisms and upstream receptors that
mediate the behavioral abnormality following surgery. In order to achieve this, I have
compared the inflammatory events after aseptic surgery with the response after a
defined infectious stimulus, to ultimately joint the two in the context of a
postoperative complication.
In conclusion, inflammation clearly plays a pivotal role in mediating physiological as
well as behavioral changes after surgery and infection. This thesis has started to
unmask the signaling pathways involved with surgery and how anti-cytokine therapy
can potentially ameliorate the associated cognitive dysfunction
Recommended from our members
Perioperative Neurocognitive Disorder: State of the Preclinical Science.
The purpose of this article is to provide a succinct summary of the different experimental approaches that have been used in preclinical postoperative cognitive dysfunction research, and an overview of the knowledge that has accrued. This is not intended to be a comprehensive review, but rather is intended to highlight how the many different approaches have contributed to our understanding of postoperative cognitive dysfunction, and to identify knowledge gaps to be filled by further research. The authors have organized this report by the level of experimental and systems complexity, starting with molecular and cellular approaches, then moving to intact invertebrates and vertebrate animal models. In addition, the authors' goal is to improve the quality and consistency of postoperative cognitive dysfunction and perioperative neurocognitive disorder research by promoting optimal study design, enhanced transparency, and "best practices" in experimental design and reporting to increase the likelihood of corroborating results. Thus, the authors conclude with general guidelines for designing, conducting and reporting perioperative neurocognitive disorder rodent research
Disrupted neuroglial metabolic coupling after peripheral surgery
Immune-related events in the periphery can remotely affect brain function, contributing to neurodegenerative processes and cognitive decline. In mice, peripheral surgery induces a systemic inflammatory response associated with changes in hippocampal synaptic plasticity and transient cognitive decline, however, the underlying mechanisms remain unknown. Here we investigated the effect of peripheral surgery on neuronal-glial function within hippocampal neuronal circuits of relevance to cognitive processing in male mice at 6, 24, and72hpostsurgery. At 6hwedetect theproinflammatorycytokineIL-6inthehippocampus, followedupbyalterations in them RNA and protein expression of astrocyticandneuronal proteinsnecessaryfor optimal energysupplytothebrainandfor thereuptakeandrecycling of glutamate in the synapse. Similarly, at 24 h postsurgery the mRNA expression of structural proteins (GFAP and AQP4) was compromised. At this time point, functional analysis in astrocytes revealed a decrease in resting calcium signaling. Examination of neuronal activity by whole-cell patch-clamp shows elevated levels of glutamatergic transmission and changes in AMPA receptor subunit composition at 72 h postsurgery. Finally, lactate, an essential energy substrate produced by astrocytes and critical for memory formation, decreases at 6 and 72 h after surgery. Based on temporal parallels with our previous studies, we propose that the previously reported cognitive decline observed at 72 h postsurgery in mice might be the consequence of temporal hippocampal metabolic, structural, and functional changes in astrocytes that lead to a disruption of the neuroglial metabolic coupling and consequently to a neuronal dysfunction.This work was supported by a “Ramón y Cajal” fellowship (RYC-2014-15792 to A.G.-C.) from Spanish “Ministerio de Economía y Competitividad”, the Swedish Research Council, the confocal microscope used in the study by Knut and Alice Wallenberg Foundation (Grant KAW2008.0149), and NIH/NIA R01AG057525 to N.T
Deferoxamine regulates neuroinflammation and iron homeostasis in a mouse model of postoperative cognitive dysfunction
BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after surgery, especially amongst elderly patients. Neuroinflammation and iron homeostasis are key hallmarks of several neurological disorders. In this study, we investigated the role of deferoxamine (DFO), a clinically used iron chelator, in a mouse model of surgery-induced cognitive dysfunction and assessed its neuroprotective effects on neuroinflammation, oxidative stress, and memory function. METHODS: A model of laparotomy under general anesthesia and analgesia was used to study POCD. Twelve to 14 months C57BL/6J male mice were treated with DFO, and changes in iron signaling, microglia activity, oxidative stress, inflammatory cytokines, and neurotrophic factors were assessed in the hippocampus on postoperative days 3, 7, and 14. Memory function was evaluated using fear conditioning and Morris water maze tests. BV2 microglia cells were used to test the anti-inflammatory and neuroprotective effects of DFO. RESULTS: Peripheral surgical trauma triggered changes in hippocampal iron homeostasis including ferric iron deposition, increase in hepcidin and divalent metal transporter-1, reduction in ferroportin and ferritin, and oxidative stress. Microglia activation, inflammatory cytokines, brain-derived neurotropic factor impairments, and cognitive dysfunction were found up to day 14 after surgery. Treatment with DFO significantly reduced neuroinflammation and improved cognitive decline by modulating p38 MAPK signaling, reactive oxygen species, and pro-inflammatory cytokines release. CONCLUSIONS: Iron imbalance represents a novel mechanism underlying surgery-induced neuroinflammation and cognitive decline. DFO treatment regulates neuroinflammation and microglia activity after surgery
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Association of polymorphisms in HCN4 with mood disorders and obsessive compulsive disorder
Hyperpolarization activated cyclic nucleotide-gated (HCN) potassium channels are implicated in the control of neuronal excitability and are expressed widely in the brain. HCN4 is expressed in brain regions relevant to mood and anxiety disorders including specific thalamic nuclei, the basolateral amygdala, and the midbrain dopamine system. We therefore examined the association of HCN4 with a group of mood and anxiety disorders. We genotyped nine tag SNPs in the HCN4 gene using Sequenom iPLEX Gold technology in 285 Caucasian patients with DSM-IV mood disorders and/or obsessive compulsive disorder and 384 Caucasian controls. HCN4 polymorphisms were analyzed using single marker and haplotype-based association methods. Three SNPs showed nominal association in our population (rs12905211, rs3859014, rs498005). SNP rs12905211 maintained significance after Bonferroni correction, with allele T and haplotype CTC overrepresented in cases. These findings suggest HCN4 as a genetic susceptibility factor for mood and anxiety disorders; however, these results will require replication using a larger sample
A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior
It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions
Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice
Abstract Introduction Acute kidney injury following surgery incurs significant mortality with no proven preventative therapy. We investigated whether the α2 adrenoceptor agonist dexmedetomidine (Dex) provides protection against ischemia-reperfusion induced kidney injury in vitro and in vivo. Methods In vitro, a stabilised cell line of human kidney proximal tubular cells (HK2) was exposed to culture medium deprived of oxygen and glucose. Dex decreased HK2 cell death in a dose-dependent manner, an effect attenuated by the α2 adrenoceptor antagonist atipamezole, and likely transduced by phosphatidylinositol 3-kinase (PI3K-Akt) signaling. In vivo C57BL/6J mice received Dex (25 μg/kg, intraperitoneal (i.p.)) 30 minutes before or after either bilateral renal pedicle clamping for 25 minutes or right renal pedicle clamping for 40 minutes and left nephrectomy. Results Pre- or post-treatment with Dex provided cytoprotection, improved tubular architecture and function following renal ischemia. Consistent with this cytoprotection, dexmedetomidine reduced plasma high-mobility group protein B1 (HMGB-1) elevation when given prior to or after kidney ischemia-reperfusion; pretreatment also decreased toll-like receptor 4 (TLR4) expression in tubular cells. Dex treatment provided long-term functional renoprotection, and even increased survival following nephrectomy. Conclusions Our data suggest that Dex likely activates cell survival signal pAKT via α2 adrenoceptors to reduce cell death and HMGB1 release and subsequently inhibits TLR4 signaling to provide reno-protection
Disrupted Neuroglial Metabolic Coupling after Peripheral Surgery
Immune-related events in the periphery can remotely affect brain function, contributing to neurodegenerative processes and cognitive
decline. In mice, peripheral surgery induces a systemic inflammatory response associated with changes in hippocampal synaptic plasticity
and transient cognitive decline, however, the underlying mechanisms remain unknown. Here we investigated the effect of peripheral
surgery on neuronal-glial function within hippocampal neuronal circuits of relevance to cognitive processing in male mice at 6, 24,
and 72hpostsurgery.At6hwedetect the proinflammatory cytokine IL-6 in the hippocampus, followedupby alterations in themRNAand
protein expression of astrocytic and neuronal proteins necessary for optimal energy supply to the brain and for the reuptake and recycling
of glutamate in the synapse. Similarly, at 24 h postsurgery the mRNA expression of structural proteins (GFAP and AQP4) was compromised.
At this time point, functional analysis in astrocytes revealed a decrease in resting calcium signaling. Examination of neuronal
activity by whole-cell patch-clamp shows elevated levels of glutamatergic transmission and changes in AMPA receptor subunit composition
at 72 h postsurgery. Finally, lactate, an essential energy substrate produced by astrocytes and critical for memory formation,
decreases at 6 and 72 h after surgery. Based on temporal parallels with our previous studies, we propose that the previously reported
cognitive decline observed at 72 h postsurgery in mice might be the consequence of temporal hippocampal metabolic, structural, and
functional changes in astrocytes that lead to a disruption of the neuroglial metabolic coupling and consequently to a neuronal dysfunction
Conserved YKL-40 changes in mice and humans after postoperative delirium
Delirium is a common postoperative neurologic complication among older adults. Despite its prevalence (14%–50%) and likely association with inflammation, the exact mechanisms that underpin postoperative delirium are unclear. This project aimed to characterize systemic and central nervous system (CNS) inflammatory changes following surgery in mice and humans. Matched plasma and cerebrospinal fluid (CSF) samples from the “Investigating Neuroinflammation Underlying Postoperative Brain Connectivity Changes, Postoperative Cognitive Dysfunction, Delirium in Older Adults” (INTUIT; NCT03273335) study were compared to murine endpoints. Delirium-like behavior was evaluated in aged mice using the 5-Choice Serial Reaction Time Test (5-CSRTT). Using a well established orthopedic surgical model in the FosTRAP reporter mouse we detected neuronal changes in the prefrontal cortex, an area implicated in attention, but notably not in the hippocampus. In aged mice, plasma interleukin-6 (IL-6), chitinase-3-like protein 1 (YKL-40), and neurofilament light chain (NfL) levels increased after orthopedic surgery, but hippocampal YKL-40 expression was decreased. Given the growing evidence for a YKL-40 role in delirium and other neurodegenerative conditions, we assayed human plasma and CSF samples. Plasma YKL-40 levels were similarly increased after surgery, with a trend toward a greater postoperative plasma YKL-40 increase in patients with delirium. However, YKL-40 levels in CSF decreased following surgery, which paralleled the findings in the mouse brain. Finally, we confirmed changes in the blood-brain barrier (BBB) as early as 9 h after surgery in mice, which warrants more detailed and acute evaluations of BBB integrity following surgery in humans. Together, these results provide a nuanced understanding of neuroimmune interactions underlying postoperative delirium in mice and humans, and highlight translational biomarkers to test potential cellular targets and mechanisms
- …
