253 research outputs found

    Linear Analysis of the Hall Effect in Protostellar Disks

    Get PDF
    The effects of Hall electromotive forces (HEMFs) on the linear stability of protostellar disks are examined. Earlier work on this topic focused on axial field and perturbation wavenumbers. Here we treat the problem more generally. Both axisymmetric and nonaxisymmetric cases are investigated. Though seldom explicitly included in calculations, HEMFs appear to be important whenever Ohmic dissipation is. They allow for the appearance of electron whistler waves, and since these have right-handed polarization, a helicity factor is also introduced into the stability problem. This factor is the product of the components of the angular velocity and magnetic field along the perturbation wavenumber, and it is destabilizing when negative. Unless the field and angular velocity are exactly aligned, it is always possible to find destabilizing wavenumbers. HEMFs can destabilize any differential rotation law, even those with angular velocity increasing outward. Regardless of the sign of the angular velocity gradient, the maximum growth rate is always given in magnitude by the local Oort A value of the disk, as in the standard magnetorotational instability. The role of Hall EMFs may prove crucial to understanding how turbulence is maintained in the ``low state'' of eruptive disk systems.Comment: 34 pages, 10 figures, AAS LaTEx, v.4.0. Submitted to Ap

    Evolution of massive and magnetized protoplanetary disks

    Full text link
    We present global 2D and 3D simulations of self-gravitating magnetized tori. We used the 2D calculations to demonstrate that the properties of the MRI are not affected by the presence of self-gravity: MHD turbulence and enhanced angular momentum transport follow the linear growth of the instability. In 3D, we have studied the interaction between an m=2m=2 gravitational instability and MHD turbulence. We found its strength to be significantly decreased by the presence of the latter, showing that both instabilities strongly interact in their non-linear phases. We discuss the consequences of these results.Comment: 8 pages, 7 figures, to appear in the proceedings of the XIXth IAP colloquium "Extrasolar Planets: Today and Tomorrow" held in Paris, France, 2003, June 30 - July 4, ASP Conf. Serie

    New composite models of partially ionized protoplanetary disks

    Full text link
    We study an accretion disk in which three different regions may coexist: MHD turbulent regions, dead zones and gravitationally unstable regions. Although the dead zones are stable, there is some transport due to the Reynolds stress associated with waves emitted from the turbulent layers. We model the transport in each of the different regions by its own α\alpha parameter, this being 10 to 10310^{3} times smaller in dead zones than in active layers. In gravitationally unstable regions, α\alpha is determined by the fact that the disk self-adjusts to a state of marginal stability. We construct steady-state models of such disks. We find that for uniform mass flow, the disk has to be more massive, hotter and thicker at the radii where there is a dead zone. In disks in which the dead zone is very massive, gravitational instabilities are present. Whether such models are realistic or not depends on whether hydrodynamical fluctuations driven by the turbulent layers can penetrate all the way inside the dead zone. This may be more easily achieved when the ratio of the mass of the active layer to that of the dead zone is relatively large, which in our models corresponds to α\alpha in the dead zone being about 10% of α\alpha in the active layers. If the disk is at some stage of its evolution not in steady-state, then the surface density will evolve toward the steady-state solution. However, if α\alpha in the dead zone is much smaller than in the active zone, the timescale for the parts of the disk beyond a few AU to reach steady-state may become longer than the disk lifetime. Steady-state disks with dead zones are a more favorable environment for planet formation than standard disks, since the dead zone is typically 10 times more massive than a corresponding turbulent zone at the same location.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Evolution of self-gravitating magnetized disks. II- Interaction between MHD turbulence and gravitational instabilities

    Full text link
    We present 3D magnetohydrodynamic (MHD) numerical simulations of the evolution of self--gravitating and weakly magnetized disks with an adiabatic equation of state. Such disks are subject to the development of both the magnetorotational and gravitational instabilities, which transport angular momentum outward. As in previous studies, our hydrodynamical simulations show the growth of strong m=2 spiral structure. This spiral disturbance drives matter toward the central object and disappears when the Toomre parameter Q has increased well above unity. When a weak magnetic field is present as well, the magnetorotational instability grows and leads to turbulence. In that case, the strength of the gravitational stress tensor is lowered by a factor of about~2 compared to the hydrodynamical run and oscillates periodically, reaching very small values at its minimum. We attribute this behavior to the presence of a second spiral mode with higher pattern speed than the one which dominates in the hydrodynamical simulations. It is apparently excited by the high frequency motions associated with MHD turbulence. The nonlinear coupling between these two spiral modes gives rise to a stress tensor that oscillates with a frequency which is a combination of the frequencies of each of the modes. This interaction between MHD turbulence and gravitational instabilities therefore results in a smaller mass accretion rate onto the central object.Comment: 31 pages, 19 figures, accepted for publication in ApJ, animation avalaible at http://www2.iap.fr/users/fromang/simu3d/simu3d.htm

    How does disk gravity really influence type-I migration ?

    Full text link
    We report an analytical expression for the locations of Lindblad resonances induced by a perturbing protoplanet, including the effect of disk gravity. Inner, outer and differential torques are found to be enhanced compared to situations where a keplerian velocity field for the dynamics of both the disk and the planet is assumed. Inward migration is strongly accelerated when the disk gravity is only accounted for in the planet orbital motion. The addition of disk self-gravity slows down the planet drift but not enough to stop it.Comment: 4 pages, accepted for publication in A&A Letter

    Turbulence and angular momentum transport in a global accretion disk simulation

    Get PDF
    The global development of magnetohydrodynamic turbulence in an accretion disk is studied within a simplified disk model that omits vertical stratification. Starting with a weak vertical seed field, a saturated state is obtained after a few tens of orbits in which the energy in the predominantly toroidal magnetic field is still subthermal. The efficiency of angular momentum transport, parameterized by the Shakura-Sunyaev alpha parameter, is of the order of 0.1. The dominant contribution to alpha comes from magnetic stresses, which are enhanced by the presence of weak net vertical fields. The power spectra of the magnetic fields are flat or decline only slowly towards the largest scales accessible in the calculation, suggesting that the viscosity arising from MHD turbulence may not be a locally determined quantity. I discuss how these results compare with observationally inferred values of alpha, and possible implications for models of jet formation.Comment: ApJ Letters, in press. The paper and additional visualizations are available at http://www.cita.utoronto.ca/~armitage/global_abs.htm

    Wave Excitation in Disks Around Rotating Magnetic Stars

    Full text link
    The accretion disk around a rotating magnetic star (neutron star, white dwarf or T Tauri star) is subjected to periodic vertical magnetic forces from the star, with the forcing frequency equal to the stellar spin frequency or twice the spin frequency. This gives rise bending waves in the disk that may influence the variabilities of the system. We study the excitation, propagation and dissipation of these waves using a hydrodynamical model coupled with a generic model description of the magnetic forces. The m=1m=1 bending waves are excited at the Lindblad/vertical resonance, and propagate either to larger radii or inward toward the corotation resonance where dissipation takes place. While the resonant torque is negligible compared to the accretion torque, the wave nevertheless may reach appreciable amplitude and can cause or modulate flux variabilities from the system. We discuss applications of our result to the observed quasi-periodic oscillations from various systems, in particular neutron star low-mass X-ray binaries.Comment: Small changes/clarifications. To be published in ApJ, Aug.20,2008 issu

    Nonaxisymmetric Magnetorotational Instability in Proto-Neutron Stars

    Full text link
    We investigate the stability of differentially rotating proto-neutron stars (PNSs) with a toroidal magnetic field. Stability criteria for nonaxisymmetric MHD instabilities are derived using a local linear analysis. PNSs are expected to have much stronger radial shear in the rotation velocity compared to normal stars. We find that nonaxisymmetric magnetorotational instability (NMRI) with a large azimuthal wavenumber mm is dominant over the kink mode (m=1m=1) in differentially rotating PNSs. The growth rate of the NMRI is of the order of the angular velocity Ω\Omega which is faster than that of the kink-type instability by several orders of magnitude. The stability criteria are analogous to those of the axisymmetric magnetorotational instability with a poloidal field, although the effects of leptonic gradients are considered in our analysis. The NMRI can grow even in convectively stable layers if the wavevectors of unstable modes are parallel to the restoring force by the Brunt-V\"ais\"al\"a oscillation. The nonlinear evolution of NMRI could amplify the magnetic fields and drive MHD turbulence in PNSs, which may lead to enhancement of the neutrino luminosity.Comment: 24pages, 7figures, Accepted for publication in the Astrophysical Journal (December 12, 2005

    Zonal Flows and Long-Lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence

    Full text link
    We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to ten scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor two when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This in turn generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short time-scales creates zonal flow structures with life-times of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.Comment: Accepted for publication in Ap

    An Incoherent α−Ω\alpha-\Omega Dynamo in Accretion Disks

    Full text link
    We use the mean-field dynamo equations to show that an incoherent alpha effect in mirror-symmetric turbulence in a shearing flow can generate a large scale, coherent magnetic field. We illustrate this effect with simulations of a few simple systems. In accretion disks, this process can lead to axisymmetric magnetic domains whose radial and vertical dimensions will be comparable to the disk height. This process may be responsible for observations of dynamo activity seen in simulations of dynamo-generated turbulence involving, for example, the Balbus-Hawley instability. In this case the magnetic field strength will saturate at ∌(h/r)2\sim (h/r)^2 times the ambient pressure in real accretion disks. The resultant dimensionless viscosity will be of the same order. In numerical simulations the azimuthal extent of the simulated annulus should be substituted for rr. We compare the predictions of this model to numerical simulations previously reported by Brandenburg et al. (1995). In a radiation pressure dominated environment this estimate for viscosity should be reduced by a factor of (Pgas/Pradiation)6(P_{gas}/P_{radiation})^6 due to magnetic buoyancy.Comment: 23 pages, uses aaste
    • 

    corecore