29 research outputs found

    Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis

    Get PDF
    The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as \u201csoloists\u201d or by their \u201cdangerous liaisons\u201d, in favoring tumor progression by dissecting the cellular and molecular mechanisms involved

    When a Friend Becomes Your Enemy: Natural Killer Cells in Atherosclerosis and Atherosclerosis-Associated Risk Factors

    Get PDF
    Atherosclerosis (ATS), the change in structure and function of arteries with associated lesion formation and altered blood flow, is the leading cause of cardiovascular disease, the number one killer worldwide. Beyond dyslipidemia, chronic inflammation, together with aberrant phenotype and function of cells of both the innate and adaptive immune system, are now recognized as relevant contributors to atherosclerosis onset and progression. While the role of macrophages and T cells in atherosclerosis has been addressed in several studies, Natural Killer cells (NKs) represent a poorly explored immune cell type, that deserves attention, due to NKs’ emerging contribution to vascular homeostasis. Furthermore, the possibility to re-polarize the immune system has emerged as a relevant tool to design new therapies, with some succesfull exmples in the field of cancer immunotherapy. Thus, a deeper knowledge of NK cell pathophysiology in the context of atherosclerosis and atherosclerosis-associated risk factors could help developing new preventive and treatment strategies, and decipher the complex scenario/history from “the risk factors for atherosclerosis” Here, we review the current knowledge about NK cell phenotype and activities in atherosclerosis and selected atherosclerosis risk factors, namely type-2 diabetes and obesity, and discuss the related NK-cell oriented environmental signals

    EPR/alanine dosimetry for verification in Helical Tomotherapy Stereotactic Radiosurgery (HTSRS) treatments

    Get PDF
    Introduction Intracranial stereotactic radiosurgery (SRS) is a technique to deliver an ablative radiation dose with an extremely sharp dose gradient to small brain tumors. In this study the accuracy of the dose delivered in SRS by a non conventional radiotherapy machine, the TomoTherapy Hi-Art System, was investigated using an "end-to-end" test using alanine pellets and gafchromic films. Methods Dose verifications were made using alanine dosimeters placed in an antropomorphic head phantom (Alderson Rando Phantom) under different treatment conditions in case of both single and multiple brain tumors. 1.25mm slice kVCT scan of the phantom was used to generate SRS plans on the TomoTherapy Planning Station platform. Commercial alanine dosimeters (Synergy Health, Germany) were irradiated in various positions of the phantom. EPR measurements were carried out through Bruker spectrometer at room temperature. Results The dose values for 6 different possible clinical scenarios characterized by the presence of one, two or three tumor lesions were reconstructed by means of alanine dosimeters and gafchromic films. The dose values measured through both experimental techniques show a good agreement with the dose values calculated by the TomoTherapy Treatment Planning System, for both tumors and organs at risk (such as optical chiasma and brain stem). Conclusion Alanine absolute dose measurements showed to be useful for the dosimetric validation of HT SRS treatments

    The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors

    No full text
    Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFβ), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME

    Metabolic Rewiring in the Tumor Microenvironment to Support Immunotherapy: A Focus on Neutrophils, Polymorphonuclear Myeloid-Derived Suppressor Cells and Natural Killer Cells

    No full text
    Leukocytes often undergo rapid changes in cell phenotype, for example, from a resting to an activated state, which places significant metabolic demands on the cell. These rapid changes in metabolic demand need to be tightly regulated to support immune cell effector functions during the initiation and downregulation of an immune response. Prospects for implementing cancer immunotherapy also rest on the idea of optimizing the metabolic profile of immune cell effectors. Here, we examine this issue by focusing on neutrophils and NK cells as cells of increasing interest in cancer immunology and tumor immunometabolism, because they can be targeted or, in the case of NK, used as effectors in immunotherapy. In addition, neutrophils and NK cells have been shown to functionally interact. In the case of neutrophils, we also extended our interest to polymorphonuclear MDSC (PMN-MDSCs), since the granulocytic subset of MDSCs share many phenotypes and are functionally similar to pro-tumor neutrophils. Finally, we reviewed relevant strategies to target tumor metabolism, focusing on neutrophils and NK cells
    corecore