57 research outputs found

    Analytical evaluation of QuantiFERON- Plus and QuantiFERON- Gold In-tube assays in subjects with or without tuberculosis

    Get PDF
    The QuantiFERON-TB Gold Plus (QFT-Plus) represents the new QuantiFERON-TB Gold In-tube (QFT-GIT) to identify latent tuberculosis infection (LTBI). The main differences is the addition of a new tube containing shorter peptides stimulating CD8 T-cells. Aim of this study is to evaluate the accuracy of QFT-Plus compared with QFT-GIT in a cross sectional study of individuals with or without tuberculosis (TB). We enrolled 179 participants: 19 healthy donors, 58 LTBI, 33 cured TB and 69 active TB. QFT-Plus and QFT-GIT were performed. The two tests showed a substantial agreement. Moreover we found a similar sensitivity in active TB and same specificity in healthy donors. A higher proportion of the LTBI subjects responded to both TB1 and TB2 compared to those with active TB (97% vs 81%). Moreover, a selective response to TB2 was associated with active TB (9%) and with a severe TB disease, suggesting that TB2 stimulation induces a CD8 T-cell response in absence of a CD4-response. In conclusion, QFT-Plus and QFT-GIT assays showed a substantial agreement and similar accuracy for active TB detection. Interestingly, a higher proportion of the LTBI subjects responded concomitantly to TB1 and TB2 compared to those with active TB, whereas a selective TB2 response associated with active TB

    First characterization of the CD4 and CD8 T-cell responses to QuantiFERON-TB Plus

    Get PDF
    Summary Introduction QuantiFERON ® -TB Gold Plus (QFT-Plus) is the new generation of QuantiFERON-TB Gold In-Tube test to identify latent tuberculosis infection (LTBI). QFT-Plus includes TB1 and TB2 tubes which contain selected Mycobacterium tuberculosis (Mtb) peptides designed to stimulate both CD4 and CD8 T-cells. Aim of this study is the flow cytometric characterization of the specific CD4 and CD8 T-cell responses to Mtb antigens contained within QFT-Plus. Methods We enrolled 27 active tuberculosis (TB) patients and 30 LTBI individuals. Following stimulation with TB1 and TB2, antigen-specific T-cells were characterized by flow cytometry. Data were also correlated with the grade of TB severity. Results TB1 mainly elicited a CD4 T-cell response while TB2 induced both CD4 and CD8 responses. Moreover, the TB2-specific CD4 response was detected for both active TB and LTBI patients, whereas the TB2-specific CD8 response was primarily associated with active TB (p = 0.01). Conclusions To our knowledge, we report the first characterization of the CD4 and CD8 T-cell response to QFT-Plus. CD8 T-cell response is mainly due to TB2 stimulation which is largely associated to active TB. These results provide a better knowledge on the use of this assay

    Higher Frequency of T-Cell Response to M. tuberculosis Latency Antigen Rv2628 at the Site of Active Tuberculosis Disease than in Peripheral Blood

    Get PDF
    RATIONALE: Due to the invasive nature of the procedures involved, most studies of Mycobacterium tuberculosis (Mtb)-specific immunity in humans have focused on the periphery rather than the site of active infection, the lung. Recently, antigens associated with Mtb-latency and -dormancy have been described using peripheral blood (PB) cells; however their response in the lung is unknown. The objective of this report was to evaluate, in patients prospectively enrolled with suspected active tuberculosis (TB), whether the latency antigen Rv2628 induces local-specific immune response in bronchoalveolar lavage (BAL) cells compared to PB cells. MATERIAL/METHODS: Among the 41 subjects enrolled, 20 resulted with active TB. Among the 21 without active disease, 9 were defined as subjects with latent TB-infection (LTBI) [Quantiferon TB Gold In-tube positive]. Cytokine responses to Rv2628 were evaluated by enzyme linked immunospot (ELISPOT) assay and flow cytometric (FACS) analysis. RD1-secreted antigen stimulation was used as control. RESULTS: There was a significantly higher frequency of Rv2628- and RD1-specific CD4+ T-cells in the BAL of active TB patients than in PB. However the trend of the response to Rv2628 in subjects with LTBI was higher than in active TB in both PB and BAL, although this difference was not significant. In active TB, Rv2628 and RD1 induced a cytokine-response profile mainly consisting of interferon (IFN)-γ-single-positive over double-IFN-γ/interleukin (IL)-2 T-cells in both PB and BAL. Finally, BAL-specific CD4+ T-cells were mostly effector memory (EM), while peripheral T-cell phenotypes were distributed among naïve, central memory and terminally differentiated effector memory T-cells. CONCLUSIONS: In this observational study, we show that there is a high frequency of specific T-cells for Mtb-latency and RD1-secreted antigens (mostly IFN-γ-single-positive specific T-cells with an EM phenotype) in the BAL of active TB patients. These data may be important for better understanding the pathogenesis of TB in the lung

    Diferenças no aumento da glicemia entre equinos recebendo xilazina e detomidina para procedimentos clínicos cirúrgicos e não-cirúrgicos

    Get PDF
    The aim of this prospective randomized clinical study was to compare blood glucose and cortisol levels between horses receiving xylazine and detomidine for surgical and non-surgical procedures. Horses from non-surgical groups received 0.5 mg/kg of xylazine (GX group, n=5) or 0.01 mg/kg of detomidine (GD group, n=5) for gastroscopic examination. Horses from the surgical groups received similar doses of xylazine (AX group, n=7) or detomidine (AD group, n=7), followed by anesthetic induction with 2 mg/kg of ketamine and 0.05 mg/kg of diazepam for an arthroscopic procedure under isoflurane anesthesia. Blood samples were obtained prior to the alpha-2 agonist administration (baseline) and after 10, 30, 60 and 90 minutes. All groups had a significant increase in blood glucose from 30 to 90 minutes after alpha-2 agonist administration, compared to baseline. After receiving the alpha-2 agonist, the AD group had blood glucose levels (118-150 mg/dL) significantly higher than GD (99-119 mg/dL) and AX (97-116 mg/dL) groups. Cortisol had no significant changes within a group. However, the AX group had cortisol levels (3.6-3.7 mg/dL) significantly lower than GX group (5.4-5.7 mg/dL) from 30 to 90 minutes after xylazine administration. We concluded that blood glucose levels were when detomidine was administered for surgical procedure, compared to xylazine also for surgical procedure, and non-surgical procedure. Serum cortisol was minimally affected by administration of xylazine and detomidine regardless procedures were surgical or non-surgical.O objetivo deste estudo clínico, radomizado e prospectivo, foi comparar as concentrações sanguíneas de glicose e cortisol entre equinos recebendo xilazina e detomidina para procedimentos cirúrgicos e não-cirúrgicos. Os equinos dos grupos não-cirúrgicos receberam 0,5 mg/kg de xilazina (grupo GX, n=5) ou 0,01 mg/kg de detomidina (grupo GD, n=5) para realização de exame gastroscópico. Os equinos dos grupos cirúrgicos receberam doses semelhantes de xilazina (grupo AX, n=7) ou detomidina (grupo AD, n=7), seguindo-se a indução anestésica com 2 mg/kg de cetamina e 0,05 mg/kg de diazepam para realização de procedimento artroscópico durante anestesia com isofluorano. As amostras de sangue foram coletadas antes da administração do alfa-2 agonista (basal) e após 10, 30, 60 e 90 minutos. Todos os grupos tiveram um aumento significativo da glicemia, a partir de 30 até 90 minutos da administração do alfa-2 agonista, em relação ao basal. Após receber o alfa-2 agonista, o grupo AD apresentou glicemia (118-150 mg/dL) significativamente maior que os grupos GD (99-119 mg/dL) e AX (97-116 mg/dL). Não houve diferenças significativas da concentração de cortisol dentro de cada grupo. Entretanto, o grupo AX apresentou níveis de cortisol (3,6-3,7 mg/dL) significativamente mais baixos que o grupo GX (5,4-5,7 mg/dL), a partir de 30 até 90 minutos da administração de xilazina. Concluímos que a glicemia apresentou valor mais elevadoapós a administração de detomidina para realização de procedimento cirúrgico, comparado à xilazina administrada também para procedimento cirúrgico, e para procedimento não-cirúrgico. A concentração sérica de cortisol foi minimamente influenciada pela administração de xilazina e detomidina independentemente dos procedimentos serem cirúrgicos ou não-cirúrgico

    Methylated HBHA produced in <i>M. smegmatis</i> discriminates between active and non-active tuberculosis disease among RD1-responders

    Get PDF
    Background. A challenge in tuberculosis (TB) research is to develop a new immunological test that can help distinguish, among subjects responsive to QuantiFERON TB Gold In tube (QFT-IT), those who are able to control Mtb replication (remote LTBI, recent infection and past TB) from those who cannot (active TB disease). IFN-γ; response to the Heparin-binding-hemagglutinin (HBHA) of Mtb has been associated with LTBI, but the cumbersome procedures of purifying the methylated and immunological active form of the protein from Mtb or M. bovis Bacillus Calmette et Guerin (BCG) have prevented its implementation in a diagnostic test. Therefore, the aim of the present study was to evaluate the IFN-γ response to methylated HBHA of Mtb produced in M. smegmatis (rHBHAms) in individuals at different stages of TB who scored positive to QFT-IT. Methodology/Principal Findings. 87 individuals at different stages of TB who scored positive to QFT-IT were selected. IFN-γ response to in vitro whole blood stimulation with rHBHAms was evaluated by short-term and long-term tests and detected by ELISA or flow cytometry. We demonstrated that the IFN-γ response to rHBHAms is mediated by CD4+ T-cells with an effector-memory phenotype. This response, evaluated by short-term-tests, is significantly lower in active TB than in remote LTBI (p = 0.0010) and past TB (p = 0.0152). These results were confirmed by long-term tests. The qualitative data confirmed that IFN-γ responses higher than the cut-off point identified by ROC analysis are associated with the status of non-active disease. Conclusions. In this study we show that the T-cell response to a recombinant and methylated HBHA of Mtb produced in M. smegmatis is useful to discriminate between active and non-active TB disease among those responsive to QFT-IT in a whole blood system. Further studies are needed to improve the accuracy of the assay

    Methylated HBHA Produced in M. smegmatis Discriminates between Active and Non-Active Tuberculosis Disease among RD1-Responders

    Get PDF
    A challenge in tuberculosis (TB) research is to develop a new immunological test that can help distinguish, among subjects responsive to QuantiFERON TB Gold In tube (QFT-IT), those who are able to control Mtb replication (remote LTBI, recent infection and past TB) from those who cannot (active TB disease). IFN-\u3b3 response to the Heparin-binding-hemagglutinin (HBHA) of Mtb has been associated with LTBI, but the cumbersome procedures of purifying the methylated and immunological active form of the protein from Mtb or M. bovis Bacillus Calmette et Guerin (BCG) have prevented its implementation in a diagnostic test. Therefore, the aim of the present study was to evaluate the IFN-\u3b3 response to methylated HBHA of Mtb produced in M. smegmatis (rHBHAms) in individuals at different stages of TB who scored positive to QFT-IT

    New tools for detecting latent tuberculosis infection: evaluation of RD1-specific long-term response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon-gamma (IFN-γ) release assays (IGRAs) were designed to detect latent tuberculosis infection (LTBI). However, discrepancies were found between the tuberculin skin test (TST) and IGRAs results that cannot be attributed to prior Bacille Calmètte Guerin vaccinations. The aim of this study was to evaluate tools for improving LTBI diagnosis by analyzing the IFN-γ response to RD1 proteins in prolonged (long-term response) whole blood tests in those subjects resulting negative to assays such as QuantiFERON-TB Gold In tube (QFT-IT).</p> <p>Methods</p> <p>The study population included 106 healthy TST<sup>+ </sup>individuals with suspected LTBI (recent contact of smear-positive TB and homeless) consecutively enrolled. As controls, 13 healthy subjects unexposed to <it>M. tuberculosis </it>(TST<sup>-</sup>, QFT-IT<sup>-</sup>) and 29 subjects with cured pulmonary TB were enrolled. IFN-γ whole blood response to RD1 proteins and QFT-IT were evaluated at day 1 post-culture. A prolonged test evaluating long-term IFN-γ response (7-day) to RD1 proteins in diluted whole blood was performed.</p> <p>Results</p> <p>Among the enrolled TST<sup>+ </sup>subjects with suspected LTBI, 70/106 (66.0%) responded to QFT-IT and 64/106 (60.3%) to RD1 proteins at day 1. To evaluate whether a prolonged test could improve the detection of LTBI, we set up the test using cured TB patients (with a microbiologically diagnosed past pulmonary disease) who resulted QFT-IT-negative and healthy controls as comparator groups. Using this assay, a statistically significant difference was found between IFN-γ levels in cured TB patients compared to healthy controls (p < 0.006). Based on these data, we constructed a receiver operating characteristic (ROC) curve and we calculated a cut-off. Based on the cut-off value, we found that among the 36 enrolled TST+ subjects with suspected LTBI not responding to QFT-IT, a long term response to RD1 proteins was detected in 11 subjects (30.6%).</p> <p>Conclusion</p> <p>These results indicate that IFN-γ long-term response to <it>M. tuberculosis </it>RD1 antigens may be used to detect past infection with <it>M. tuberculosis </it>and may help to identify additional individuals with LTBI who resulted negative in the short-term tests. These data may provide useful information for improving immunodiagnostic tests for tuberculosis infection, especially in individuals at high risk for active TB.</p

    IP-10 detection in urine is associated with lung diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>blood cytokines and chemokines have been proposed as biomarkers for tuberculosis (TB). Recently, some immune mediators found in the urine of patients with renal dysfunctions have also been suggested as potential biomarkers. Finding biomarkers for TB in urine would present several advantages over blood in terms of collection and safety. The objective of this study was to investigate the presence of cytokines and chemokines in the urine of patients with pulmonary TB at the time of diagnosis. In a subgroup, the evaluation was also performed during TB treatment and at therapy completion. Patients with lung diseases other than TB, and healthy subjects were also enrolled.</p> <p>Methods</p> <p>urine samples from 138 individuals, after exclusion of renal dysfunctions, were collected during an 18 month-period. Among them, 58 received a diagnosis of pulmonary TB, 28 resulted having lung diseases other than TB, and 34 were healthy subjects. Moreover, 18 TB patients, 9 of whom were tested 2 months after AFB smear sputum reversion and 9 of whom were cured of TB were also included. Cytokines and chemokines in urine were evaluated using a Cytometric-Bead-Array-Flex-Set. IP-10 detection in 49 subjects was also carried out in parallel by using an Enzyme Linked ImmunoSorbent Assay (ELISA).</p> <p>Results</p> <p>IFN-γ, TNF-α, IL-2, IL-8, MIP-1α, MIP-1β and RANTES were poorly detected in all urine samples. Conversely, IP-10 was consistently detected in urine and its level was significantly increased in patients with lung disease compared to healthy subjects (p < 0.001). Increased IP-10 levels were found in both pulmonary TB and lung diseases other than TB. Moreover lower IP-10 levels were found in cured-TB patients compared to the levels at the time of diagnosis, and this difference was close to significance (p = 0.06). Interestingly, we demonstrated a significant correlation between the data obtained by flow cytometry and ELISA (r<sup>2 </sup>0.82, p < 0.0001).</p> <p>Conclusions</p> <p>IP-10, in contrast to IFN-γ, TNF-α, IL-2, IL-8, MIP-1α, MIP-1β and RANTES, is detectable in the urine of patients with pulmonary diseases in the absence of renal dysfunctions. Moreover, the IP-10 level in cured-TB patients is comparable to that found in healthy subjects. More studies are needed to further investigate the clinical utility of these findings.</p

    New molecular diagnostic and immunological tools for tuberculosis research

    No full text
    Tuberculosis (TB) remains one of the world’s leading causes of mortality due to a single infectious agent, with approximately 1.5 million deaths and 9.2 million new cases per year as estimated in 2006. It is assumed that about 5-10% of individuals infected with M. tuberculosis develop TB and the remaining 90-95% contain M. tuberculosis through their immune systems, but have a latent tuberculosis infection (LTBI). To effectively control TB, it is essential to detect individuals with LTBI and to reliably diagnose active TB. Conventional TB diagnosis continues to rely on smear microscopy and culture that have several known limitations in terms of both speed and sensitivity that delay the diagnosis and, consequently, hold-up TB treatment and increase the spread of infection in the community. M. tuberculosis infection remains widespread, but the disease is generally limited to the primary infection stage. Patients with an immune defect or impaired immunity are more prone to develop the disease. In LTBI, the host immune response is capable of controlling the infection by the release of chemokines and cytokines produced by T helper (Th) cells, critical for the outcome of the infection. Several cells of the immune system are involved in the control of TB, from the macrophages and dendritic cells, called antigen presenting cells (APC) to the T cells, CD4, CD8, gamma delta T cells. Activation of these cells with excessive pro inflammatory responses can lead to tissue damage, with the need of mechanisms to counteract this, such as Th2 and T regulatory cells (Treg)-mediated responses. The optimal scenario would therefore seem to have balanced Th1, Th2 and Treg response, suited to the immune challenge. The balance between these types of response is reflected in the resultant host resistance against infection. Therefore the aims of the thesis were to find new approaches for diagnosis of active TB (First Part) and LTBI (Second Part). In this work we wanted to explore the immune mechanisms of TB pathogenesis with particular focus on the impact of Treg on suppressing M. tuberculosis-specific response (Third Part). For the diagnosis of active TB, we describe an alternative PCR methodology based on the amplification of small DNA fragments, originated from cells dying throughout the body (transrenal DNA; Tr-DNA) and detected in urine. It was found that small M. tuberculosis DNA fragments were specifically detected in the cell-free fraction of urine specimens from pulmonary TB patients. To detect LTBI, we compared the performances of two short-incubation interferon (IFN)-g release assays (IGRAs), the commercial QuantiFERON TB-Gold and the in-house whole blood stimulation with region of difference (RD)-1 proteins, with those of a 7-day whole blood stimulation and tuberculin skin test (TST). In an effort to find new markers for LTBI diagnosis, we also evaluated the production of pro-inflammatory cytokines [interleukin (IL)-1, IL-2, IL-6 and Tumor Necrosis Factor (TNF)-alfa], anti-inflammatory cytokines (IL-4, IL-10, IL-13) and chemokines [inducible protein (IP)-10, Macrophage Inflammatory Protein (MIP)-alfa, MIP-1beta, IL-8] after specific stimulation. The results raise the hypothesis that short-incubation IGRAs mainly detect recent or ongoing infection with M. tuberculosis, while prolonged-incubation IGRAs seem to be more sensitive for the diagnosis of past latent infection. Moreover we found that IL-2 and IP-10 may be additional markers for TB infection after RD1 specific stimulation. Finally we wanted to evaluate the impact of Treg on suppressing M. tuberculosis-specific response. Using classical markers for Treg recognition, discordant results were found in terms of Treg expansion during active TB disease. Recently CD39 has been shown to be an accurate marker for Treg detection. Objectives of this part of the thesis were: 1) to identify Treg expressing CD39 in patients with TB and to compare the results with those obtained by the standard phenotypic markers; 2) to evaluate if Treg are expanded in vitro by exogenous IL-2 or by antigen-specific stimulation; 3) to characterize Treg function on the modulation of antigen-specific responses. In this study we demonstrated that CD39 is a useful marker to detect Treg because within CD4+CD25high cells, it identifies a cell subset characterized by high production of transforming growth factor (TGF)-beta1 and the absence of IFN-gamma expression. Moreover, we showed that CD39+ Treg are expanded by M. tuberculosis-specific stimulation in patients with active TB disease
    corecore