9 research outputs found

    A novel three-dimensional computational method to assess rod contour deformation and to map bony fusion in a lumbopelvic reconstruction after en-bloc sacrectomy.

    Get PDF
    Introduction: En-bloc resection of a primary malignant sacral tumor with wide oncological margins impacts the biomechanics of the spinopelvic complex, deteriorating postoperative function. The closed-loop technique (CLT) for spinopelvic fixation (SPF) uses a single U-shaped rod to restore the spinopelvic biomechanical integrity. The CLT method was designed to provide a non-rigid fixation, however this hypothesis has not been previously tested. Here, we establish a computational method to measure the deformation of the implant and characterize the bony fusion process based on the 6-year follow-up (FU) data. Materials and Methods: Post-operative CT scans were collected of a male patient who underwent total sacrectomy at the age of 42 due to a chordoma. CLT was used to reconstruct the spinopelvic junction. We defined the 3D geometry of the implant construct. Using rigid registration algorithms, a common coordinate system was created for the CLT to measure and visualize the deformation of the construct during the FU. In order to demonstrate the cyclical loading of the construct, the patient underwent gait analysis at the 6th year FU. First, a region of interest (ROI) was selected at the proximal level of the construct, then the deformation was determined during the follow-up period. In order to investigate the fusion process, a single axial slice-based voxel finite element (FE) mesh was created. The Hounsfield values (HU) were determined, then using an empirical linear equation, bone mineral density (BMD) values were assigned for every mesh element, out of 10 color-coded categories (1st category = 0 g/cm3, 10th category 1.12 g/cm3). Results: Significant correlation was found between the number of days postoperatively and deformation in the sagittal plane, resulting in a forward bending tendency of the construct. Volume distributions were determined and visualized over time for the different BMD categories and it was found that the total volume of the elements in the highest BMD category in the first postoperative CT was 0.04 cm3, at the 2nd year, FU was 0.98 cm3, and after 6 years, it was 2.30 cm3. Conclusion: The CLT provides a non-rigid fixation. The quantification of implant deformation and bony fusion may help understate the complex lumbopelvic biomechanics after sacrectomy

    Angiotensin II activates plasminogen activator inhibitor-I promoter in renal tubular epithelial cells via the AT1 receptor

    No full text
    Background: Plasminogen activator inhibitor-1 (PAI-1) regulates normal extracellular matrix (ECM) metabolism and it is a key regulator of the fibrotic process. Both angiotensin II (Ang II) and angiotensin IV (Ang IV) have been reported to stimulate PAI-1 expression. It is not known how PAI-1 expression is regulated by the renin-angiotensin system (RAS) in renal tubular cells. Methods: To dissect signaling mechanisms contributing to the up-regulation of the PAI-1 promoter, porcine proximal tubular cells stably expressing the rabbit AT 1 receptor (LLC-PK/AT 1 ) were transiently transfected with a luciferase reporter construct containing the PAI-1 promoter. Promoter activation was assessed by measuring luciferase activity from cell lysates. Results: Ang II dose-dependently stimulated the transcriptional activity of the PAI-1 promoter in renal proximal tubular cells whereas Ang IV had no consistent effect on the promoter activity. Neither inhibition of the Extracellular Signal Regulated Kinase (ERK) cascade nor inhibition of the c-Jun-N- terminal Kinase (JNK) pathway did reduce the stimulation of the PAI-1 promoter by Ang II. However, genistein, a tyrosine kinase inhibitor blocked the effect of Ang II. Conclusion: Ang II but not Ang IV activates the PAI-1 promoter in renal proximal tubular cells and this effect is mediated by tyrosine kinases

    A Novel Three-Dimensional Computational Method to Assess Rod Contour Deformation and to Map Bony Fusion in a Lumbopelvic Reconstruction After En-Bloc Sacrectomy

    No full text
    Introduction: En-bloc resection of a primary malignant sacral tumor with wide oncological margins impacts the biomechanics of the spinopelvic complex, deteriorating postoperative function. The closed-loop technique (CLT) for spinopelvic fixation (SPF) uses a single U-shaped rod to restore the spinopelvic biomechanical integrity. The CLT method was designed to provide a non-rigid fixation, however this hypothesis has not been previously tested. Here, we establish a computational method to measure the deformation of the implant and characterize the bony fusion process based on the 6-year follow-up (FU) data. Materials and Methods: Post-operative CT scans were collected of a male patient who underwent total sacrectomy at the age of 42 due to a chordoma. CLT was used to reconstruct the spinopelvic junction. We defined the 3D geometry of the implant construct. Using rigid registration algorithms, a common coordinate system was created for the CLT to measure and visualize the deformation of the construct during the FU. In order to demonstrate the cyclical loading of the construct, the patient underwent gait analysis at the 6th year FU. First, a region of interest (ROI) was selected at the proximal level of the construct, then the deformation was determined during the follow-up period. In order to investigate the fusion process, a single axial slice-based voxel finite element (FE) mesh was created. The Hounsfield values (HU) were determined, then using an empirical linear equation, bone mineral density (BMD) values were assigned for every mesh element, out of 10 color-coded categories (1st category = 0 g/cm3, 10th category 1.12 g/cm3). Results: Significant correlation was found between the number of days postoperatively and deformation in the sagittal plane, resulting in a forward bending tendency of the construct. Volume distributions were determined and visualized over time for the different BMD categories and it was found that the total volume of the elements in the highest BMD category in the first postoperative CT was 0.04 cm3, at the 2nd year, FU was 0.98 cm3, and after 6 years, it was 2.30 cm3. Conclusion: The CLT provides a non-rigid fixation. The quantification of implant deformation and bony fusion may help understate the complex lumbopelvic biomechanics after sacrectomy

    The humerus is the best place for bone lengthening

    No full text
    The aim of this study was to examine the effectiveness of lengthening the humerus in children and young adults. Between 1984 and 2005, the Orthopaedic Department of Semmelweis University elongated 11 humeri (ten patients) for reasons of congenital hypoplasia (four cases), osteomyelitis (three cases), epiphyseolysis, growth plate closure after irradiation and obstetrical paralysis (one case each). The study cohort consisted of five females and five males, with an average age at the time of surgery of 17.8 years (range: 12–31 years). In every case, the lengthening was performed with a unilateral Wagner fixator. The lengthening protocol was 1 mm distraction daily (callotasis) after a 7-day latency period. The fixator was removed after total bone healing. Plate fixation or bone transplantation was not used. The average rate of lengthening was 6.2 cm (4.5–10.5 cm), and the achieved lengthening was 27% (range: 16–44%). The average healing index was 32 day/cm. One patient who suffered from temporary radial paresis, and temporary flexion contracture of the elbow was regarded as a complication following placement of the fixator. Based on our results, humeral shortening can effectively be treated with the unilateral Wagner fixator. The main difference between the original Wagner method and our approach is that we were able to leave the fixator in the humerus until total bony reconstruction so there was no need for plate fixation or bone transplantation

    III. ABTEILUNG

    No full text
    corecore