7 research outputs found

    Spontaneously Generated Gauge Invariance

    Get PDF
    We argue that the non-observability of the spontaneous breakdown of Lorentz symmetry (SBLS) caused by the vacuum expectation values of vector fields could provide the origin of all internal symmetries observed. Remarkably, the application of this principle to the most general relativistically invariant Lagrangian, with arbitrary couplings for all the fields involved, leads by itself to the appearance of a symmetry and, what is more, to the massless vector field(s) gauging this symmetry. A simple model for the SBLS based on massive vector and real scalar field interactions is considered; it is found that spontaneously broken gauge symmetries could also appear, when SBLS happens and is required to be physically unobservable.Comment: 20 page LaTeX file, expanded conclusion and other minor addition

    Lorentz Invariance and Origin of Symmetries

    Get PDF
    In this letter we reconsider the role of Lorentz invariance in the dynamical generation of the observed internal symmetries. We argue that, generally, Lorentz invariance can only be imposed in the sense that all Lorentz non-invariant effects caused by the spontaneous breakdown of Lorentz symmetry are physically unobservable. Remarkably, the application of this principle to the most general relativistically invariant Lagrangian, with arbitrary couplings for all the fields involved, leads by itself to the appearance of a symmetry and, what is more, to the massless vector fields gauging this symmetry in both Abelian and non-Abelian cases. In contrast, purely global symmetries are only generated as accidental consequences of the gauge symmetry.Comment: 10 page LaTeX fil

    Constrained Gauge Fields from Spontaneous Lorentz Violation

    Get PDF
    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AÎĽAÎĽ=M2A_{\mu}A^{\mu}=M^{2} (MM is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPTCPT) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical Lorentz violation due to the simultaneously generated gauge invariance.Comment: 15 pages, minor corrections, version to be published in Nucl. Phys.

    Spontaneous Lorentz Violation: Non-Abelian Gauge Fields as Pseudo-Goldstone Vector Bosons

    Get PDF
    We argue that non-Abelian gauge fields can be treated as the pseudo-Goldstone vector bosons caused by spontaneous Lorentz invariance violation (SLIV). To this end, the SLIV which evolves in a general Yang-Mills type theory with the nonlinear vector field constraint Tr(% \boldsymbol{A}_{\mu }\boldsymbol{A}^{\mu})=\pm M^{2} (MM is a proposed SLIV scale) imposed is considered in detail. With an internal symmetry group GG having DD generators not only the pure Lorentz symmetry SO(1,3), but the larger accidental symmetry SO(D,3D)SO(D,3D) of the SLIV constraint in itself appears to be spontaneously broken as well. As a result, while the pure Lorentz violation still generates only one genuine Goldstone vector boson, the accompanying pseudo-Goldstone vector bosons related to the SO(D,3D)SO(D,3D) breaking also come into play in the final arrangement of the entire Goldstone vector field multiplet. Remarkably, they remain strictly massless, being protected by gauge invariance of the Yang-Mills theory involved. We show that, although this theory contains a plethora of Lorentz and CPTCPT violating couplings, they do not lead to physical SLIV effects which turn out to be strictly cancelled in all the lowest order processes considered. However, the physical Lorentz violation could appear if the internal gauge invariance were slightly broken at very small distances influenced by gravity. For the SLIV scale comparable with the Planck one the Lorentz violation could become directly observable at low energies.Comment: Invited talk given at Caucasian-German School and Workshop in Hadron Physics (4-7 September 2006, Tbilisi, Georgia

    Spontaneous Lorentz Violation via QED with Non-Exact Gauge Invariance

    Full text link
    We reconsider an alternative theory of the QED with the photon as a massless vector Nambu-Goldstone boson and show that the underlying spontaneous Lorentz violation caused by the vector field vacuum expectation value, while being superficial in gauge invariant theory, becomes physically significant in the QED with a tiny gauge non-invariance. This leads, through special dispersion relations appearing for charged fermions, to a new class of phenomena which could be of distinctive observational interest in particle physics and astrophysics. They include a significant change in the GZK cutoff for UHE cosmic-ray nucleons, stability of high-energy pions and W bosons, modification of nucleon beta decays, and some others.Comment: 15 pages, to appear in Eur.Phys.J.

    Standard Model with Partial Gauge Invariance

    Full text link
    We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV) which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B_{mu} and its interactions leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz beaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.Comment: 32 pages, extended version, to appear in Eur.Phys.J.
    corecore