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Abstract

We argue that non-Abelian gauge fields can be treated as the pseudo-Goldstone vector bosons caused by spontaneous Lorentz invariance
violation (SLIV). To this end, the SLIV which evolves in a general Yang–Mills type theory with the nonlinear vector field constraint Tr(AμAμ) =
±M2 (M is a proposed SLIV scale) imposed is considered in detail. Specifically, we show that in a theory with an internal symmetry group G

having D generators not only the pure Lorentz symmetry SO(1,3), but the larger accidental symmetry SO(D,3D) of the SLIV constraint in itself
appears to be spontaneously broken as well. As a result, although the pure Lorentz violation on its own still generates only one genuine Goldstone
vector boson, the accompanying pseudo-Goldstone vector bosons related to the SO(D,3D) breaking also come into play properly completing
the whole gauge multiplet of the internal symmetry group G taken. Remarkably, they appear to be strictly massless as well, being protected by
the starting non-Abelian gauge invariance of the Yang–Mills theory involved. When expressed in terms of the pure Goldstone vector modes, this
theory look essentially nonlinear and contains a plethora of Lorentz and CPT violating couplings. However, they do not lead to physical SLIV
effects which turn out to be strictly cancelled in all the lowest order processes considered.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

The old idea [1] that spontaneous Lorentz invariance vio-
lation (SLIV) may lead to an alternative theory of quantum
electrodynamics still remains extremely attractive in numerous
theoretical contexts [2] (for some later developments, see the
papers [3]). The SLIV could generally cause the appearance
of massless vector Nambu–Goldstone modes which are identi-
fied with photons and other gauge fields underlying the modern
particle physics framework like as Standard Model and Grand
Unified Theory. At the same time, the Lorentz violation on its
own has attracted a considerable attention in recent years as an
interesting phenomenological possibility appearing in various
quantum field and string theories [4–9].

The first models realizing the SLIV conjecture were based
on the four fermion (current–current) interaction, where the
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gauge field appears as a fermion–antifermion pair composite
state [1], in complete analogy with a massless composite scalar
field in the original Nambu–Jona-Lasinio model [10]. Unfor-
tunately, owing to the lack of a starting gauge invariance in
such models and the composite nature of the Goldstone modes
which appear, it is hard to explicitly demonstrate that these
modes really form together a massless vector boson as a gauge
field candidate. Actually, one must make a precise tuning of
parameters, including a cancellation between terms of differ-
ent orders in the 1/N expansion (where N is the number of
fermion species involved), in order to achieve the massless pho-
ton case [11]. Rather, there are in general three separate mass-
less Goldstone modes, two of which may mimic the transverse
photon polarizations, while the third one must be appropriately
suppressed.

In this connection, the more instructive laboratory for SLIV
consideration proves to be some simple class of the QED type
models having from the outset a gauge invariant form, whereas
the Lorentz violation is realized through the nonlinear dynami-
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cal constraint imposed on the starting vector field Aμ

(1)A2
μ = n2

μM2,

where nμ is an properly oriented unit Lorentz vector, while
M is a proposed SLIV scale (hereafter, as usual, we sum over
repeated indices). This constraint means in essence that the vec-
tor field Aμ develops the vacuum expectation value 〈Aμ(x)〉 =
nμM and Lorentz symmetry SO(1,3) breaks down to SO(3) or
SO(1,2) depending on the time-like (n2

μ = +1) or space-like
(n2

μ = −1) SLIV. Such QED model was first studied by Nambu
a long time ago [12], but only for the time-like SLIV case and
in the tree approximation. For this purpose he applied the tech-
nique of nonlinear symmetry realizations which appeared to be
successful in the handling of the spontaneous breakdown of chi-
ral symmetry in the nonlinear σ model [13] and beyond.1

In the present Letter, we mainly address ourselves to the
Yang–Mills gauge fields as the possible vector Goldstone
modes (Section 3) as soon as some basic ingredients of the
Goldstonic QED model are established in a general SLIV case
(Section 2). This problem has been discussed many times in
the literature within quite different contexts, such as the Yang–
Mills gauge fields as the Goldstone modes for the sponta-
neous breaking of general covariance in a higher-dimensional
space [17] or for the nonlinear realization of some special
infinite parameter gauge group [18]. However, all these con-
siderations look rather speculative and optional. Specifically,
they do not give a correlation between the SLIV induced pho-
ton case, from the one hand, and the Yang–Mills gauge field
case, from the other. In contrast, our approach is solely based
on the spontaneous Lorentz violation thus properly generaliz-
ing the Goldstonic QED model [12] to the non-Abelian internal
symmetry case. Just in this approach the interrelation between
both of cases appears to be most transparent. We will see that in
the Yang–Mills theory case with an internal symmetry group G

having D generators not only the pure Lorentz symmetry part
SO(1,3) in the symmetry SO(1,3) × G of the Lagrangian, but
a much higher accidental symmetry SO(D,3D) of the SLIV
constraint Tr(AμAμ) = ±M2 in itself also happens to sponta-
neously broken. As a result, many extra massless modes, the
pseudo-Goldstone vector bosons (PGB), have to arise. Actu-
ally, while the spontaneous Lorentz violation on its own still

1 Actually, the simplest possible way to obtain the above supplementary con-
dition (1) could be an inclusion the “standard” quartic vector field potential

V (A) = −m2
A

2 A2
μ + λA

4 (A2
μ)2 into the QED type Lagrangian, as can be moti-

vated to an extent from some models in superstring theory [14]. This potential
inevitably causes the spontaneous violation of Lorentz symmetry in a conven-
tional way, much as an internal symmetry violation is caused in a linear σ model
for pions [13]. As a result, one has a massive Higgs mode (with mass

√
2mA)

together with a massless Goldstone mode associated with photon. Furthermore,
just as in the pion model one can go from the linear model for the SLIV to
the nonlinear one taking a limit λA → ∞, m2

A
→ ∞ (while keeping the ra-

tio m2
A

/λA to be finite). This immediately leads to the constraint (1) for vector

potential Aμ with n2
μM2 = m2

A
/λA , as it appears from a validity of its equa-

tion of motion. Another motivation for the nonlinear vector field constraint (1)
might be an attempt to avoid the infinite self-energy of the electron in a clas-
sical electrodynamics, as was originally indicated by Dirac [15] and extended
later to various vector field theory cases [16].
generates only one genuine Goldstone vector boson, the ac-
companying vector PGBs related to the SO(D,3D) breaking
also come into play properly completing the whole gauge mul-
tiplet of the internal symmetry group G taken. Remarkably, in
contrast to the familiar scalar PGB case [13] the vector PGBs
remain strictly massless being protected by the starting non-
Abelian gauge invariance of the Yang–Mills theory involved.
Then in Section 4 we show by some examples of the lowest
order SLIV processes that, while the Goldstonic non-Abelian
theory contains a rich variety of Lorentz and CPT violating
couplings, it proves to be physically indistinguishable from the
Yang–Mills theory. Actually, one of the goals of the present
work is to explicitly demonstrate that a conventional Yang–
Mills theory (as well as QED) is in fact a spontaneously broken
theory. The Lorentz violation, due to the quadratic field con-
straint of the type (1), renders this theory highly nonlinear in
the Goldstone vector modes, though physically equivalent to the
usual one. So, as well as in the pure QED case, the SLIV only
means the noncovariant gauge choice in the otherwise gauge
invariant and Lorentz invariant Yang–Mills theory. However,
even a tiny breaking of the starting gauge invariance at very
small distances influenced by gravity would render the SLIV
physically significant. For the SLIV scale comparable with the
Planck one, the spontaneous Lorentz violation could become
directly observable at low energies. We summarize the results
obtained in the final Section 5.

2. Goldstonic quantum electrodynamics

The simplest SLIV model is given by a conventional QED
Lagrangian for the charged fermion field ψ

(2)L(A,ψ) = −1

4
FμνF

μν + ψ̄(iγ · ∂ − m)ψ − eAμψ̄γ μψ,

where the nonlinear vector field constraint (1) is imposed [12].
We can rewrite the Lagrangian L(A,ψ) in terms of the physi-
cal photons now identified as being the SLIV generated vector
Goldstone bosons. For this purpose one can use the following
handy parametrization for the vector potential Aμ

(3)Aμ = aμ + nμ

n2
(n · A)

(
n2 ≡ n2

μ

)
,

where the aμ is the pure Goldstonic mode satisfying

(4)n · a = 0,

while the effective Higgs mode (or the Aμ component in the
vacuum direction) is given according to the above nonlinear
constraint (1) by

(5)n · A = (
M2 − n2a2

ν

) 1
2 = M − n2a2

ν

2M
+ O

(
1/M2)

taking, for definiteness, the positive sign for the above square
root and expanding it in powers of a2

ν/M
2. Putting then the

parametrization (3) with the SLIV constraint (5) into our basic
gauge invariant Lagrangian (2) one comes to the truly Gold-
stonic model for QED. This model might seem unacceptable
since it contains, among other terms, the inappropriately large
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Lorentz violating fermion bilinear eMψ̄(γ ·n)ψ which appears
when the expansion (5) is applied to the fermion current inter-
action term eAμψ̄γ μψ in the Lagrangian L (2). However, due
to local invariance of the Lagrangian L this term can be gauged
away by making an appropriate redefinition of the fermion field
according to

(6)ψ → eieM(n·x)ψ,

through which the above fermion bilinear is exactly cancelled
by an analogous term stemming from the fermion kinetic term.
So, one eventually comes to the essentially nonlinear SLIV La-
grangian for the Goldstonic aμ field of the type (taken to the
first order in a2

ν/M
2)

L(a,ψ) = −1

4
fμνf

μν − 1

2
δ(n · a)2 − 1

4
fμνh

μν
n2a2

ρ

M

+ ψ̄(iγ · ∂ + m)ψ − eaμψ̄γ μψ

(7)+ en2a2
ρ

2M
ψ̄(γ · n)ψ.

We have denoted its strength tensor by fμν = ∂μaν − ∂νaμ,
while hμν = nμ∂ν − nν∂μ is a new SLIV oriented differen-
tial tensor acting on the infinite series in a2

ρ coming from the
expansion of the effective Higgs mode (5) from which we have
only included the first order term −n2a2

ν/2M throughout the
Lagrangian L(a,ψ). We have also explicitly introduced the or-
thogonality condition n · a = 0 into the Lagrangian through the
second term which can be treated as the gauge fixing term (tak-
ing the limit δ → ∞), and, furthermore, we have retained the
notation ψ for the redefined fermion field.

The Lagrangian (7) completes the Goldstonic QED con-
struction for the charged fermion field ψ . The model, as one can
see, contains the massless Goldstone modes given by the three
broken generators of the Lorentz group (while keeping the mas-
sive Higgs mode frozen). These modes, when lumped together,
constitute a single Goldstone vector boson associated with pho-
ton.2 In the limit M → ∞ the model is indistinguishable from a
conventional QED taken in the general axial (temporal or pure
axial) gauge. So, for this part of the Lagrangian L(a,ψ) given
by the zero-order terms in 1/M the spontaneous Lorentz vio-
lation only means the noncovariant gauge choice in otherwise
the gauge invariant (and Lorentz invariant) theory. Remark-
ably, furthermore, also all the other (first and higher order in
1/M) terms in the L(a,ψ) (7), though being by themselves
the Lorentz and CPT violating ones, appear not to cause the
physical SLIV effects due to strict cancellations in the physi-
cal processes involved. So, the nonlinear constraint (1) imposed
on the standard QED Lagrangian (2) appears in fact to be a
possible gauge choice, while the S-matrix remains unaltered
under such a gauge convention. This conclusion was first con-
firmed at the tree level [12] and recently extended to the one-

2 Strictly speaking one can no longer use the standard definition of photon
as a state being the spin-1 representation of the (now spontaneously broken)
Poincare group. However, due to gauge symmetry of the starting QED La-
grangian (2) the separate SLIV Goldstone modes appear combined in such a
way that a standard photon (taken in an axial gauge (4)) emerges.
loop approximation [19]. All the one-loop contributions to the
photon–photon, photon–fermion and fermion–fermion interac-
tions violating the physical Lorentz invariance were shown to
be exactly cancelled with each other, in the manner observed
earlier for the simplest tree-order diagrams. This suggests that
the vector field constraint A2

μ = n2
μM2 having been treated as a

nonlinear gauge choice at the tree (classical) level, remains as
just a pure gauge condition when quantum effects are also taken
into account. Remarkably, this conclusion appears to work also
for a general Abelian theory case [20], particularly, when the
internal U(1) charge symmetry is spontaneously broken hand
in hand with the Lorentz one. As a result, the massless pho-
ton being first generated by the Lorentz violation become then
massive due to the standard Higgs mechanism, while the SLIV
condition in itself remains to be a gauge choice.3

3. Goldstonic Yang–Mills theory

In this section, we extend our discussion to the non-Abelian
internal symmetry case given by a general group G with genera-
tors t i ([t i , tj ] = icijktk and Tr(t i tj ) = δij where cijk are struc-
ture constants and i, j, k = 0,1, . . . ,D −1). The corresponding
vector fields which transform according to its adjoint represen-
tation are given in the proper matrix form Aμ = Ai

μti , while
the matter fields (fermions, for definiteness) are presented in
the fundamental representation column ψr (r = 0,1, . . . , d −1)
of G. By analogy with the above Goldstonic QED case, we take
for them a conventional Yang–Mills type Lagrangian

L(A,ψ) = −1

4
Tr

(
FμνF

μν
) + ψ̄(iγ · ∂ − m)ψ

(8)+ gψ̄Aμγ μψ

(where Fμν = ∂μAν − ∂νAμ − ig[Aμ,Aν] and g stands for
the universal coupling constant in the theory) with the nonlinear
SLIV constraint

(9)Tr
(
AμAμ

) = n2
μM2, n2

μ = ±1

imposed.4 One can easily see that, although we propose only
the SO(1,3) × G invariance in the theory, the SLIV constraint
taken (9) possesses, in fact, a much higher accidental symmetry

3 Note in this connection that there was discussed [12] a possibility of an ex-
plicit construction of the gauge function corresponding to the nonlinear gauge
constraint (1) that would eliminate the need for all the kinds of checks of gauge
invariance mentioned above. Remarkably, the equation for this gauge func-
tion appears to be mathematically equivalent to the classical Hamilton–Jacobi
equation of motion for a charged particle. Thus, this gauge function should in
principle exist because there is a solution to the classical problem. However,
this formal analogy only works for the time-like SLIV (n2

μ = +1) in the pure
QED leaving aside a general Abelian theory when the gauge invariance can
spontaneously be broken. Apart from that, it cannot be generally extended to
the non-Abelian case (see Section 3).

4 As in the Abelian case, the existence of such a constraint could be related
with some nonlinear σ type SLIV model proposed for the vector field multiplet
Ai

μ in the Yang–Mills theory (8). Note in this connection that, due to its generic

antisymmetry, the familiar quadrilinear terms − 1
4 g2 Tr([Aμ,Aν ])2 in the La-

grangian (8) do not contribute into the SLIV since they identically vanish for
any single-valued vacuum configuration 〈Ai

μ〉.
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SO(D,3D) determined by the dimensionality D of the G group
adjoint representation to which the vector fields Ai

μ belong.
This symmetry is indeed spontaneously broken at a scale M

(10)
〈
Ai

μ(x)
〉 = ni

μM,

with the vacuum direction given now by the ‘unit’ rectangu-
lar matrix ni

μ describing simultaneously both of the general-
ized SLIV cases, time-like (SO(D,3D) → SO(D − 1,3D)) or
space-like (SO(D,3D) → SO(D,3D − 1)), respectively, de-
pending on the sign of the n2

μ ≡ ni
μnμ,i = ±1. This matrix has

in fact only one non-zero element for both cases, subject to the
appropriate SO(D,3D) rotation. They are, specifically, n0

0 or
n0

3 provided that the vacuum expectation value (10) is devel-
oped along the i = 0 direction in the internal space and along
the μ = 0 or μ = 3 direction, respectively, in the Minkowskian
space–time. As we shall soon see, in response to each of these
two breakings, side by side with one true vector Goldstone
boson corresponding to the spontaneous violation of actual
SO(1,3)⊗G symmetry of the total Lagrangian L, D−1 vector
pseudo-Goldstone bosons related to breaking of the accidental
SO(D,3D) symmetry of the SLIV constraint taken (9) per se
are also produced. Remarkably, in contrast to the familiar scalar
PGB case [13] the vector PGBs remain strictly massless being
protected by the non-Abelian gauge invariance of the starting
Lagrangian (8). Together with the aforementioned true vector
Goldstone boson they complete the whole Goldstonic vector
field multiplet of the internal symmetry group G.

Actually, as in the above Abelian case, after the explicit use
of the corresponding SLIV constraint (9), which is so far the
only supplementary condition for vector field multiplet Ai

μ, one
can identify the pure Goldstone field modes ai

μ as follows:

(11)Ai
μ = ai

μ + ni
μ

n2
(n · A), n · a ≡ ni

μaμ,i = 0
(
n2 ≡ n2

μ

)
.

At the same time, an effective Higgs mode (i.e., the Ai
μ com-

ponent in the vacuum direction ni
μ) is given by the product

n · A ≡ ni
μAμ,i determined by the SLIV constraint

(12)n · A = [
M2 − n2(ai

ν

)2] 1
2 = M − n2(ai

ν)
2

2M
+ O

(
1/M2).

As earlier in the Abelian case, we take the positive sign for the
square root and expand it in powers of (ai

ν)
2/M2. Note that

the general Goldstonic modes ai
μ, apart from pure vector fields,

contain the D−1 scalar ones, ai′
0 and ai′

3 (i′ = 1, . . . ,D−1), for
the time-like (ni

μ = n0
0gμ0δ

i0) and space-like (ni
μ = n0

3gμ3δ
i0)

SLIV, respectively. They can be eliminated from the theory if
one puts the appropriate supplementary conditions on the ai

μ

fields which are still constraint free. Using their overall or-
thogonality (11) to the physical vacuum direction ni

μ one can
formulate these supplementary conditions in terms of a general
axial gauge for the entire ai

μ multiplet

(13)n · ai ≡ nμaμ,i = 0, i = 0, . . . ,D − 1,

where nμ is the unit Lorentz vector analogous to that introduced
in the Abelian case, which is now oriented in Minkowskian
space–time so as to be parallel to the vacuum matrix ni
μ. For

such a choice the simple equation holds

(14)ni
μ = sinμ

(
si ≡ n · ni

n2

)
,

showing that the rectangular vacuum matrix ni
μ has the fac-

torized “two-vector” form. As a result, apart from the Higgs
mode excluded earlier by the orthogonality condition (11), all
the scalar fields are also eliminated, and only pure vector fields,
ai
μ′ (μ′ = 1,2,3) or ai

μ′′ (μ′′ = 0,1,2) for time-like or space-
like SLIV, respectively, are left in the theory.

We now show that these Goldstonic vector fields, denoted
generally as ai

μ but with the supplementary conditions (13) un-
derstood, appears truly massless when the starting non-Abelian
Lagrangian L (8) is subjected to the SLIV constraint (9) or (12).
Actually, putting the parametrization (11) with the SLIV con-
straint (12) into the Lagrangian (8) one is led to the highly
nonlinear Yang–Mills theory in terms of the pure Goldstonic
gauge field modes ai

μ. However, as in the above Abelian case,
one should first use the local invariance of the Lagrangian L

to gauge away the apparently large Lorentz violating terms,
which appear in the theory in the form of fermion and vector
field bilinears. As one can readily see, they stem from the ef-
fective Higgs mode expansion (12) when it is applied to the
couplings gψ̄Aμγ μψ and − 1

4g2 Tr([Aμ,Aν])2, respectively,
in the Lagrangian (8). Analogously to the Abelian case, we
make the appropriate redefinitions of the fermion (ψ ) and vec-
tor (aμ ≡ ai

μt i ) field multiplets

ψ → U(ω)ψ, aμ → U(ω)aμU(ω)†,

(15)U(ω) = eigM(ni ·x)t i .

Since the phase of the transformation matrix U(ω) is linear in
the space–time coordinate and, on the other hand, the vacuum
matrix ni

μ has only one nonzero element (n0
0 or n0

3 for the partic-
ular SLIV cases) the following equalities are evidently satisfied:

(16)∂μU(ω) = igni
μt iU(ω) = igU(ω)ni

μt i .

One can readily confirm that the above-mentioned Lorentz vio-
lating terms are thereby cancelled with the analogous bilinears
stemming from their kinetic terms. So, the final Lagrangian for
the Goldstonic Yang–Mills theory takes the form (to the first
order in (ai

ν)
2/M2)

L(a,ψ) = −1

4
Tr

(
f μνf

μν
) − 1

2
δ
(
n · ai

)2

+ 1

4
Tr

(
f μνh

μν
)n2(ai

ν)
2

M
+ ψ̄(iγ · ∂ − m)ψ

(17)+ gψ̄aμγ μψ − gn2(ai
ν)

2

2M
ψ̄

(
γ · nk

)
tkψ.

Here the tensor f μν is, as usual, f μν = ∂μaν − ∂νaμ −
ig[aμ,aν], while hμν is a new SLIV oriented tensor of the type

hμν = nμ∂ν − nν∂μ + ig
([nμ,aν] − [nν,aμ]),

(18)nμ ≡ nk
μtk,
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acting on the infinite series in (ai
ν)

2 coming from the expan-
sion of the effective Higgs mode (12) from which we have
only included the first order term −n2(ai

ν)
2/2M throughout

the Lagrangian L(a,ψ). We have explicitly introduced the (ax-
ial) gauge fixing term into the Lagrangian, corresponding to the
supplementary conditions (13) imposed. We have also retained
the original notations for the fermion and vector fields after the
transformations (15).

The theory we here derived is an essence a generalization of
the nonlinear QED model [12] for the non-Abelian case. As one
can see, this theory contains the massless vector boson multiplet
ai
μ (consisting of one Goldstone and D − 1 pseudo-Goldstone

vector states) which gauges the starting internal symmetry G.
In the limit M → ∞ it is indistinguishable from a conventional
Yang–Mills theory taken in the general axial gauge. So, for this
part of the Lagrangian L(a,ψ) given by the zero-order in 1/M

terms the spontaneous Lorentz violation only means the non-
covariant gauge choice in the otherwise gauge invariant (and
Lorentz invariant) theory. Furthermore, one may expect that,
just as it appears in the nonlinear QED model, also all the first
and higher order in 1/M terms in the L (17), though being by
themselves the Lorentz and CPT violating ones, do not cause
the physical SLIV effects due to the mutual cancellation of their
contributions to the physical processes involved.

4. The lowest order SLIV processes

Let us now show that simple tree level calculations related
to the Lagrangian L(a,ψ) confirm in essence this proposition.
As an illustration, we consider SLIV processes in the lowest
order in g and 1/M being the fundamental parameters of the
Lagrangian (17). They are, as one can readily see, the vector-
fermion and vector–vector elastic scattering going in the order
g/M which we are going to consider in some detail as soon
as the Feynman rules in the Goldstonic Yang–Mills theory are
established.

4.1. Feynman rules

The corresponding Feynman rules, apart from the ordinary
Yang–Mills theory rules for

(i) the vector-fermion vertex

(19)−igγμti,

(ii) the vector field propagator (taken in a general axial
gauge nμai

μ = 0)

(20)Dij
μν(k) = − iδij

k2

(
gμν − nμkν + kμnν

n · k + n2kμkν

(n · k)2

)
,

which automatically satisfies the orthogonality condition nμ ×
D

ij
μν(k) = 0 and on-shell transversality kμD

ij
μν(k, k2 = 0) = 0

(the latter means that free vector fields with polarization vector
εi
μ(k, k2 = 0) are always appeared transverse kμεi

μ(k) = 0);
(iii) the 3-vector vertex (with vector field 4-momenta k1, k2
and k3; all 4-momenta in vertexes are taken ingoing throughout)

(21)gcijk
[
(k1 − k2)γ gαβ + (k2 − k3)αgβγ + (k3 − k1)βgαγ

]
,

include the new ones, violating Lorentz and CPT invariance, for
(iv) the contact 2-vector-fermion vertex

(22)i
gn2

M

(
γ · nk

)
τ kgμνδ

ij ,

(v) another 3-vector vertex

− in2

M

[(
k1 · ni

)
k1,αgβγ δjk + (

k2 · nj
)
k2,βgαγ δki

(23)+ (
k3 · nk

)
k3,γ gαβδij

]
,

where the second index in the vector field 4-momenta k1, k2 and
k3 denotes their Lorentz components;

(vi) the extra 4-vector vertex (with the vector field
4-momenta k1,2,3,4 and their proper differences k12 ≡ k1 − k2,
etc.)

−n2g

M

[
cijpδklgαβgγ δ

(
np · k12

) + cklpδij gαβgγ δ

(
np · k34

)
+ cikpδjlgαγ gβδ

(
np · k13

) + cjlpδikgαγ gβδ

(
np · k24

)
(24)+ cilpδjkgαδgβγ

(
np · k14

) + cjkpδilgαδgβγ

(
np · k23

)]
,

where we have not included the terms which might contain con-
tractions of the vacuum matrix n

p
μ with vector field polarization

vectors εi
μ(k) in the vector–vector scattering amplitude since

these contractions are vanished due to the gauge taken (13),
np · εi = sp(n · εi) = 0 (as follows according to a factorized
two-vector form for the matrix n

p
μ (14)).

Just the rules (i)–(vi) are needed to calculate the lowest order
processes mentioned in the above.

4.2. Vector boson scattering on fermion

This process is directly related to two SLIV diagrams one
of which is given by the contact a2-fermion vertex (22), while
another corresponds to the pole diagram with the longitudinal
a-boson exchange between Lorentz violating a3 vertex (23) and
ordinary a-boson–fermion one (19). Since ingoing and outgo-
ing a-bosons appear transverse (k1 · εi(k1) = 0, k2 · εj (k2) = 0)
only the third term in this a3 coupling (23) contributes to the
pole diagram so that one comes to a simple matrix element iM
from both of diagrams

iM = i
gn2

M
ū(p2)τ

l
[(

γ · nl
) + i

(
k · nl

)
γ μkνDμν(k)

]
(25)× u(p1)

[
ε(k1) · ε(k2)

]
,

where the spinors u(p1,2) and polarization vectors εi
μ(k1) and

ε
j
μ(k2) stand for ingoing and outgoing fermions and a-bosons,

respectively, while k is the 4-momentum transfer k = p2 −p1 =
k1 − k2. Upon further simplifications in the square bracket re-
lated to the explicit form of the a boson propagator Dμν(k)
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(20) and matrix ni
μ (14), and using the fermion current con-

servation ū(p2)(p̂2 − p̂1)u(p1) = 0, one is finally led to the
total cancellation of the Lorentz violating contributions to the
a-boson–fermion scattering in the g/M approximation.

Note, however, that such a result may be in some sense ex-
pected since from the SLIV point of view the lowest order
a-boson–fermion scattering discussed here is hardly distinct
from the photon–fermion scattering considered in the nonlin-
ear QED case [12]. Actually, the fermion current conservation
which happens to be crucial for the above cancellation works in
both of cases, whereas the couplings which are peculiar to the
Yang–Mills theory have not yet touched on. In this connection
the next example seems to be more instructive.

4.3. Vector–vector scattering

The matrix element for this process in the lowest order g/M

is given by the contact SLIV a4 vertex (24) and the pole di-
agrams with the longitudinal a-boson exchange between the
ordinary a3 vertex (21) and Lorentz violating a3 one (23), and
vice versa. There are six pole diagrams in total describing the
elastic a–a scattering in the s- and t -channels, respectively, in-
cluding also those with an interchange of identical a-bosons.
Remarkably, the contribution of each of them is exactly can-
celed with one of six terms appeared in the contact vertex (24).
Actually, writing down the matrix element for one of the pole
diagrams with ingoing a-bosons (with momenta k1 and k2) in-
teracting through the vertex (21) and outgoing a-bosons (with
momenta k3 and k4) interacting through the vertex (23) one has

iM(1)
pole = −i

gn2

M
cijpδkl

[
(k1 − k2)μgαβ

+ (k2 − k)αgβμ + (k − k1)βgαμ

]
× Dpq

μν (k)gγ δkν

(
nq · k)

(26)× [
εi,α(k1)ε

j,β(k2)ε
k,γ (k3)ε

l,δ(k4)
]
,

where polarization vectors εi,α(k1), εj,β(k2), εk,γ (k3) and
εl,δ(k4) belong, respectively, to ingoing and outgoing a-bosons,
while k = −(k1 + k2) = k3 + k4 according to the momentum
running in the diagrams taken above. Again, as in the previous
case of vector–fermion scattering, due to the fact that outgoing
a-bosons appear transverse (k3 · εk(k3) = 0 and k4 · εl(k4) = 0),
only the third term in the Lorentz violating a3 coupling (23)
contributes to this pole diagram. After evident simplifications
related to the a-boson propagator Dμν(k) (20) and matrix ni

μ

(14) one comes to the expression which is exactly cancelled
with the first term in the contact SLIV vertex (24) when it is
properly contracted with a-boson polarization vectors. Like-
wise, other terms in this vertex provide the further one-to-one
cancellation with the remaining pole matrix elements iM(2−6)

pole .
So, again, the Lorentz violating contribution to the vector–
vector scattering is absent in Goldstonic Yang–Mills theory in
the lowest g/M approximation.
4.4. Other processes

Many other tree level Lorentz violating processes, related
to a bosons and fermions, appear in higher orders in the basic
SLIV parameter 1/M . They come from the subsequent expan-
sion of the effective Higgs mode (12) in the Lagrangian (17).
Again, their amplitudes are essentially determined by an inter-
relation between the longitudinal a-boson exchange diagrams
and the corresponding contact a-boson interaction diagrams
which appear to cancel each other thus eliminating physical
Lorentz violation in theory.

Most likely, the same conclusion can be derived for SLIV
loop contributions as well. Actually, as in the massless QED
case considered earlier [19], the corresponding one-loop ma-
trix elements in Goldstonic Yang–Mills theory either vanish by
themselves or amount to the differences between pairs of the
similar integrals whose integration variables are shifted rela-
tive to each other by some constants (being in general arbitrary
functions of external four-momenta of the particles involved)
that in the framework of dimensional regularization leads to
their total cancellation.

So, the Goldstonic vector field theory (17) for a non-Abelian
charge-carrying matter is likely to be physically indistinguish-
able from a conventional Yang–Mills theory.

5. Conclusion

The spontaneous Lorentz violation in 4-dimensonal flat
Minkowskian space–time was shown to generate vector Gold-
stone bosons both in Abelian and non-Abelian theories with
the corresponding nonlinear vector field constraint (1) or (9)
imposed. In the Abelian case such a massless vector boson is
naturally associated with photon. In non-Abelian case, although
the pure Lorentz violation still generates only one genuine
Goldstone vector boson, the accompanying vector PGBs related
to a violation of the larger accidental symmetry SO(D,3D) of
the SLIV constraint (9) in itself come also into play properly
completing the whole gauge multiplet of the internal symme-
try group G taken. Remarkably, they remain strictly massless
being protected by the starting gauge invariance of the Yang–
Mills theory involved. These theories, both Abelian and non-
Abelian, though being essentially nonlinear in the Goldstone
vector modes, appear to be physically indistinguishable from
conventional QED and Yang–Mills theories. One could actu-
ally see that just the gauge invariance ensures that our theories
do not have unreasonably large, proportional to the SLIV scale,
Lorentz violation in the fermion and vector field interaction
terms (as those which could otherwise stem from their large
bilinears in Sections 2 and 3). Furthermore, it appears also to
ensure that all the physical Lorentz violating effects, even those
suppressed by this SLIV scale, are non-observable (as was
explicitly shown in Section 4). As a result, Abelian and non-
Abelian SLIV theory appear, respectively, as standard QED and
Yang–Mills theory taken in the nonlinear gauge (to which the
vector field constraints (1) and (9) are virtually reduced), while
the S-matrix remains unaltered under such a gauge convention.
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In conclusion, it seems plausible that gauge fields, both
Abelian and non-Abelian, might have a true Goldstonic nature.
However, the most fundamental question whether the physical
Lorentz violation takes place, that only could uniquely point to-
ward such a possibility, is still an open question. Note that we
do not mean here direct (and quite arbitrary in essence) Lorentz
non-invariant extensions of QED or Standard Model which
were intensively discussed on their own in recent years [6–
8]. Rather, our goal is a construction of genuine SLIV mod-
els which would generate gauge fields as the proper vector
Goldstone bosons, from one hand, and could lead to observed
Lorentz violating effects, from the other. In this connection,
somewhat natural framework for the physical Lorentz violation
to occur would be a model where the internal gauge invariance
were slightly broken at very small distances through some high-
order operators stemming from the gravity-influenced area.
Such physical SLIV effects would be seen in terms of pow-
ers of ratio M/MPl (where MPl is the Planck mass). So, for the
SLIV scale comparable with the Planck one they would become
directly observable. Remarkably enough, if one has such inter-
nal gauge symmetry breaking in an ordinary Lorentz invariant
theory this breaking appears vanishingly small at low ener-
gies being properly suppressed by the Planck scale. However,
the spontaneous Lorentz violation would render it physically
significant: the higher Lorentz scale, the greater SLIV effects
observed. If true, it would be of particular interest to have a
better understanding of the internal gauge symmetry breaking
mechanism that brings the spontaneous Lorentz violation to low
energies. We return to this basic question elsewhere.
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