400 research outputs found

    An inhibitory substance of glyceraldehyde 3-phosphate dehydrogenase in urine of diabetic patients

    Get PDF
    In urine of diabetics, a significantly great inhibitory activity of glyceraldehyde 3-phosphate dehydrogenase (GAP-Dehyd) was observed compared with that of normal subjects. The 0.2 ml of urine from 41 patients with diabetes mellitus inhibited 0.5 units of GAP-Dehyd by 27.2 +/- 3.0% (mean +/- S.E.M.), while that from 17 normal volunteers inhibited only by 9.0 +/- 1.0% (P less than 0.05). This inhibitory substance was extracted by 90% ethanol from diabetic urine and partially purified by anion exchange chromatography using Dowex-1 (HCOO type). The molecular weight of this substance was confirmed to be 100--300 daltons by an analysis on Biogel P-4 gel filtration chromatography. And analysis by thin layer chromatography using silicagel plate showed that this inhibitor was a ninhydrin reactive substance which has not been reported previously. From the above facts, it was assumed that the inhibitory substance of GAP-Dehyd in urine of diabetics was a new acidic compound of low molecular weight containing an amino residue in the molecule.</p

    Slipping through the Cracks: Linking Low Immune Function and Intestinal Bacterial Imbalance to the Etiology of Rheumatoid Arthritis

    Get PDF
    Autoimmune diseases (ADs) are considered to be caused by the host immune system which attacks and destroys its own tissue by mistake. A widely accepted hypothesis to explain the pathogenic mechanism of ADs is “molecular mimicry,” which states that antibodies against an infectious agent cross-react with a self-antigen sharing an identical or similar antigenic epitope. However, this hypothesis was most likely established based on misleading antibody assay data largely influenced by intense false positive reactions involved in immunoassay systems. Thus reinvestigation of this hypothesis using an appropriate blocking agent capable of eliminating all types of nonspecific reactions and proper assay design is strongly encouraged. In this review, we discuss the possibility that low immune function may be the fundamental, common defect in ADs, which increases the susceptibility to potential disease causative pathogens located in the gastrointestinal tract (GI), such as bacteria and their components or dietary components. In addition to these exogenous agents, aberrations in the host’s physical condition may disrupt the host defense system, which is tightly orchestrated by “immune function,” “mucosal barrier function,” and “intestinal bacterial balance.” These disturbances may initiate a downward spiral, which can lead to chronic health problems that will evolve to an autoimmune disorder

    Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Get PDF
    Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells

    Iron availability alters ascorbate-induced stress metabolism in Glehnia littoralis root cultures.

    Get PDF
    Our previous study indicated that formation of furanocoumarin phytoalexins could be induced in Glehnia littoralis root cultures by treatment with 10-40mM ascorbic acid (AsA). This furanocoumarin production is much less evident when G. littoralis roots are treated with AsA under iron-deficient conditions. Instead, two large unknown peaks appeared in the HPLC chromatogram, whose chemical structures were elucidated by spectroscopic methods as being 6, β-dihydroxyphenethyl ferulate (DF) and 6-hydroxyphenethyl ferulate (HF), respectively. Their maximal level of induction was observed at 20mM AsA, and the production of DF always exceeded that of HF. This is the first report of these compounds in G. littoralis and of the modulation of the phytoalexin biosynthetic pathway in G. littoralis by iron deficiency

    Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress

    Get PDF
    Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage

    Evaluation of the redox state in mouse organs following radon inhalation

    Get PDF
    Radon inhalation activates antioxidative functions in mouse organs, thereby contributing to inhibition of oxidative stress-induced damage. However, the specific redox state of each organ after radon inhalation has not been reported. Therefore, in this study, we evaluated the redox state of various organs in mice following radon inhalation at concentrations of 2 or 20 kBq/m(3) for 1, 3 or 10 days. Scatter plots were used to evaluate the relationship between antioxidative function and oxidative stress by principal component analysis (PCA) of data from control mice subjected to sham inhalation. The results of principal component (PC) 1 showed that the liver and kidney had high antioxidant capacity; the results of PC2 showed that the brain, pancreas and stomach had low antioxidant capacities and low lipid peroxide (LPO) content, whereas the lungs, heart, small intestine and large intestine had high LPO content but low antioxidant capacities. Furthermore, using the PCA of each obtained cluster, we observed altered correlation coefficients related to glutathione, hydrogen peroxide and LPO for all groups following radon inhalation. Correlation coefficients related to superoxide dismutase in organs with a low antioxidant capacity were also changed. These findings suggested that radon inhalation could alter the redox state in organs; however, its characteristics were dependent on the total antioxidant capacity of the organs as well as the radon concentration and inhalation time. The insights obtained from this study could be useful for developing therapeutic strategies targeting individual organs

    Radon inhalation decreases DNA damage induced by oxidative stress in mouse organs via the activation of antioxidative functions

    Get PDF
    Radon inhalation decreases the level of lipid peroxide (LPO); this is attributed to the activation of antioxidative functions. This activation contributes to the beneficial effects of radon therapy, but there are no studies on the risks of radon therapy, such as DNA damage. We evaluated the effect of radon inhalation on DNA damage caused by oxidative stress and explored the underlying mechanisms. Mice were exposed to radon inhalation at concentrations of 2 or 20 kBq/m(3) (for one, three, or 10 days). The 8-hydroxy-2 '-deoxyguanosine (8-OHdG) levels decreased in the brains of mice that inhaled 20 kBq/m(3) radon for three days and in the kidneys of mice that inhaled 2 or 20 kBq/m(3) radon for one, three or 10 days. The 8-OHdG levels in the small intestine decreased by approximately 20-40% (2 kBq/m(3) for three days or 20 kBq/m(3) for one, three or 10 days), but there were no significant differences in the 8-OHdG levels between mice that inhaled a sham treatment and those that inhaled radon. There was no significant change in the levels of 8-oxoguanine DNA glycosylase, which plays an important role in DNA repair. However, the level of Mn-superoxide dismutase (SOD) increased by 15-60% and 15-45% in the small intestine and kidney, respectively, following radon inhalation. These results suggest that Mn-SOD probably plays an important role in the inhibition of oxidative DNA damage

    Peptide-siRNA nanocomplexes targeting NF-ÎşB subunit p65 suppress nascent experimental arthritis

    Get PDF
    The NF-ÎşB signaling pathway is implicated in various inflammatory diseases, including rheumatoid arthritis (RA); therefore, inhibition of this pathway has the potential to ameliorate an array of inflammatory diseases. Given that NF-ÎşB signaling is critical for many immune cell functions, systemic blockade of this pathway may lead to detrimental side effects. siRNAs coupled with a safe and effective delivery nanoplatform may afford the specificity lacking in systemic administration of small-molecule inhibitors. Here we demonstrated that a melittin-derived cationic amphipathic peptide combined with siRNA targeting the p65 subunit of NF-ÎşB (p5RHH-p65) noncovalently self-assemble into stable nanocomplexes that home to the inflamed joints in a murine model of RA. Specifically, administration of p5RHH-p65 siRNA nanocomplexes abrogated inflammatory cytokine expression and cellular influx into the joints, protected against bone erosions, and preserved cartilage integrity. The p5RHH-p65 siRNA nanocomplexes potently suppressed early inflammatory arthritis without affecting p65 expression in off-target organs or eliciting a humoral response after serial injections. These data suggest that this self-assembling, largely nontoxic platform may have broad utility for the specific delivery of siRNA to target and limit inflammatory processes for the treatment of a variety of diseases

    Autoantibodies to posttranslationally modified type II collagen as potential biomarkers for rheumatoid arthritis

    Get PDF
    The definitive version is available at www3.interscience.wiley.comType II collagen (CII) posttranslationally modified by reactive oxygen species (ROS-CII) that are present in the inflamed joint is an autoantigen in rheumatoid arthritis (RA). The aim of this study was to investigate the potential use of anti-ROS-CII autoantibodies as a biomarker of RA
    • …
    corecore