109 research outputs found

    Synchronization of Excitatory Neurons with Strongly Heterogeneous Phase Responses

    Full text link
    In many real-world oscillator systems, the phase response curves are highly heterogeneous. However, dynamics of heterogeneous oscillator networks has not been seriously addressed. We propose a theoretical framework to analyze such a system by dealing explicitly with the heterogeneous phase response curves. We develop a novel method to solve the self-consistent equations for order parameters by using formal complex-valued phase variables, and apply our theory to networks of in vitro cortical neurons. We find a novel state transition that is not observed in previous oscillator network models.Comment: 4 pages, 3 figure

    Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators

    Full text link
    We show that a wide class of uncoupled limit cycle oscillators can be in-phase synchronized by common weak additive noise. An expression of the Lyapunov exponent is analytically derived to study the stability of the noise-driven synchronizing state. The result shows that such a synchronization can be achieved in a broad class of oscillators with little constraint on their intrinsic property. On the other hand, the leaky integrate-and-fire neuron oscillators do not belong to this class, generating intermittent phase slips according to a power low distribution of their intervals.Comment: 10 pages, 3 figure

    Uncertainty Principle for Control of Ensembles of Oscillators Driven by Common Noise

    Full text link
    We discuss control techniques for noisy self-sustained oscillators with a focus on reliability, stability of the response to noisy driving, and oscillation coherence understood in the sense of constancy of oscillation frequency. For any kind of linear feedback control--single and multiple delay feedback, linear frequency filter, etc.--the phase diffusion constant, quantifying coherence, and the Lyapunov exponent, quantifying reliability, can be efficiently controlled but their ratio remains constant. Thus, an "uncertainty principle" can be formulated: the loss of reliability occurs when coherence is enhanced and, vice versa, coherence is weakened when reliability is enhanced. Treatment of this principle for ensembles of oscillators synchronized by common noise or global coupling reveals a substantial difference between the cases of slightly non-identical oscillators and identical ones with intrinsic noise.Comment: 10 pages, 5 figure

    A Measurement of the D±D^{*\pm} Cross Section in Two-Photon Processes

    Get PDF
    We have measured the inclusive D±D^{*\pm} production cross section in a two-photon collision at the TRISTAN e+ee^+e^- collider. The mean s\sqrt{s} of the collider was 57.16 GeV and the integrated luminosity was 150 pb1pb^{-1}. The differential cross section (dσ(D±)/dPTd\sigma(D^{*\pm})/dP_T) was obtained in the PTP_T range between 1.6 and 6.6 GeV and compared with theoretical predictions, such as those involving direct and resolved photon processes.Comment: 8 pages, Latex format (article), figures corrected, published in Phys. Rev. D 50 (1994) 187

    Ab initio many-body calculations on infinite carbon and boron-nitrogen chains

    Full text link
    In this paper we report first-principles calculations on the ground-state electronic structure of two infinite one-dimensional systems: (a) a chain of carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield results were obtained using the restricted Hartree-Fock approach, while the many-body effects were taken into account by second-order M{\o}ller-Plesset perturbation theory and the coupled-cluster approach. The calculations were performed using 6-31GG^{**} basis sets, including the d-type polarization functions. Both at the Hartree-Fock (HF) and the correlated levels we find that the infinite carbon chain exhibits bond alternation with alternating single and triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In addition, we also performed density-functional-theory-based local density approximation (LDA) calculations on the infinite carbon chain using the same basis set. Our LDA results, in contradiction to our HF and correlated results, predict a very small bond alternation. Based upon our LDA results for the carbon chain, which are in agreement with an earlier LDA calculation calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).], we conclude that the LDA significantly underestimates Peierls distortion. This emphasizes that the inclusion of many-particle effects is very important for the correct description of Peierls distortion in one-dimensional systems.Comment: 3 figures (included). To appear in Phys. Rev.

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks

    Get PDF
    Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings

    Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches

    Get PDF
    Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB) and Posterior Weighted Averaging (PWA) methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC) algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics
    corecore