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Abstract: Assessment of strain accumulation due to nonlinear events like creep, plasticity or ratcheting phenomenon 

has gained importance, as it causes an increase in creep and fatigue damage in structures. Some factors such as the 

magnitude of loading, constitutive equations or the elastic regions around the nonlinear events have an effect on the 

rate of strain accumulation. The elastic follow-up can explain the mechanism of plastic strain accumulation. This 

phenomenon may occur when a mechanical structure with elastic manner is connected to non-linear events. In cyclic 

loading with non-zero mean stress, the plastic strain may be accumulated. This behavior is known as ratcheting and 

usually takes place under cyclic load-control conditions. A new simplified method is proposed in this paper in order 

to assess the effects of elastic follow-up on the ratcheting behavior of two-plate model made up of AISI 1045 steel 

under displacement-control loading and a set of experimental tests are conducted to verify this method. The tests 

were carried out by a servo-hydraulic Zwick-Roell machine. The test results confirm the accuracy of the proposed 

method and also reveal that in the presence of EFU in the system, the cyclic accumulation of plastic strain in addition 

to the load-control conditions may occur locally in the displacement-control conditions. 

Keywords: Elastic follow-up; Ratcheting Strain; Assessment; Cyclic loading; Displacement Controlled condition; 

Load Controlled condition; Stiffness 

1. Introduction 

Strain accumulation in mechanical structures has gained importance since it causes an increase in creep and 

fatigue damage of materials. When a mechanical structure with elastic manner is connected to non-linear events and 

they are subjected to a displacement-control loading, the plastic strain may be accumulated. Some of these non-linear 

events that can be noted are structural discontinuities, local creep, ratcheting strain and so on. The elastic follow-up 
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(EFU) concept can explain the plastic strain accumulation. In these cases, the high rigidity portion of elastic region of 

mechanical structures may enhance the force to the regions with low rigidity. 

The EFU was first raised by Robinson (1939) in work focused on assessing the impact of creep damage on un-

cracked structures. He tested the relaxation of bolted joints due to creep and noted that the amount of initial elastic 

deformation in the bolt and flange was important in determining the rate of relaxation due to creep in the bolt. Robinson 

accidently referred this phenomenon as follow-up elasticity to refer to the amount of elastic deformation in the flange; 

but he did not present a definition for this phenomenon. He described that when the flange is rigid the EFU is zero 

and the plastic strain is accumulated in the bolt because of the creep. In this situation if the ends of the bolt remain 

fixed, the force in the bolt reduces. In other words, when the flange is elastic, EFU is nonzero, and as creep occurs in 

the bolt, the ends of the bolt move apart as a result of elastic recovery of a flange. Therefore, the relaxation of force in 

the bolt is decreased compared to the case of the rigid flange. As EFU increases in the joints, the rate of relaxation of 

force decreases. Robinson (1955) also examined creep relaxation in several piping expansion loops and demonstrated 

that, creep strain accumulation could occur in deformation-control loading conditions. Following on from Robinson’s 

early work, a uni-axial description of EFU due to creep has been provided by many authors. Boyle et al. (1981) and 

Kasahara (2001) presented a simple description for quantifying EFU in a simple two-bar in series model subjected to 

a fixed displacement and the creep power law. At elevated temperatures, EFU becomes more important (Boyle et al. 

1987). A number of researchers including Teramae (1983), Dhalla (1986) and Roche (1986) investigated the influence 

of EFU on creep in high temperature pipe work systems. 

The stress is usually classified as primary and secondary parts. In principle, primary stress is necessary to satisfy 

equilibrium equations and cannot disappear as a result of non-elastic deformations. Secondary stress is necessary to 

satisfy compatibility equations (material continuity) and may disappear due to non-elastic deformations (plasticity or 

creep), (Roche 1988). A number of researchers have proved that when EFU exists in mechanical components, the 

secondary stresses must be classified as primary either partly or fully depending on the level of associated elastic 

follow-up (Dhalla 1991). Although residual stresses are classified as secondary, it has come to the attention of many 

researchers that it may be necessary to treat these stresses as primary when the associated EFU in mechanical system 

is high (Hadidi-Moud et al. 2008 and Arid et al. 2008). Recent studies were carried out by Fujioka (2013), Ainsworth 

(2012) and Boyle (2013) which investigated the impact of EFU on creep and provided guidelines for fast reactor 

structural design standards, and fitness-for-service codes. 
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Many components may be operated under cyclic loading conditions. In the case of cyclic loading with non-zero 

mean stress, the cyclic accumulation of plastic strain which is known as ratcheting may occur (Ohno 1997). This 

behavior usually takes place under cyclic load-control conditions and accelerates damage accumulation and reduces 

fatigue life of mechanical components (Chen et al. 2005). The main parameters which have effects on ratcheting 

behavior are cyclic loading conditions (stress amplitude and mean stress), and viscosity of the materials (Chen et al. 

2006). Ratcheting had been extensively studied in the past three decades. Jain et al. (1978) investigated the impacts 

of mode of buckling and shape of cross section on the hysteresis behavior of steel tube under cycling axial loading. 

Chen et al. (2009) investigated the effects of stress amplitude, mean stress, loading history and rate of stress on the 

ratcheting behavior of high-nitrogen steel X13CrMnMoN18-14-3 under uniaxial loading. Shariati et al. (2012) and 

Shariati et al. (2014) carried out an experimental study to investigate the softening and ratcheting behaviors of SS316L 

cantilevered cylindrical shells under cyclic bending load. The cyclic plasticity models were also proposed by 

researchers including Chaboche et al. (1990), Ohno (1998) and AbdelKarim et al. (2000). A detailed reviews of some 

unified viscoplastic constitutive theories and various plasticity rule which used for modeling the ratcheting behavior 

of materials can be found in chaboche (2008). Halama et al. (2016) studied the influence of mean stress and stress 

amplitude on steady state ratcheting of ST52 steel and presented a new cyclic plasticity model based on the 

AbdelKarim–Ohno model. 

As ratcheting is a non-linear event, EFU may have some influence on this phenomenon. Taleb et al. (1998) 

investigated the effect of elastic follow-up on ratcheting behavior of metallic structures. They concluded that the 

presence of EFU in a system has influenced the ratcheting behavior of the system. Also Taleb (1998) examined the 

behavior of Bitube models by the simplified methods and confirmed that the elastic analysis cannot be always 

considered to be reliable because it is not able to take into account the effect of the elastic follow-up phenomenon. In 

this paper the effect of EFU on the cyclic accumulation of plastic strain or ratcheting behavior of two-plates in series 

under displacement-control loading conditions are investigated by using the proposed simplified method and the 

experimental tests. a uni-axial test has been considered in order to compare the results with experimental results. The 

tests were carried out by a servo-hydraulic Zwick-Roell machine. The results reveal that in the presence of EFU in 

mechanical structures, the cyclic accumulation of plastic strain or ratcheting may occur locally in displacement-control 

loading conditions in addition to the load-control loading conditions. 

2. Elastic Follow-up and ratcheting behavior 
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As mentioned above, many researchers have explained the concept of elastic follow-up. For elastic follow up to 

occur, there should be a non-linear event in a mechanical structure with elastic manner. In other word, it is essential 

that the system be loaded non-elastically (plasticity, local creep or cyclic plastic strain).  

The definition of EFU factor for relaxation behavior which is proposed by the R5 (2003) assessment procedure 

for the high temperature response of structures is applied in this study. This definition is illustrated in Fig. 1. The EFU 

factor, Z, is defined as: 

dεୡഥ
dt

൅
Z
Eഥ
dσത
dt

ൌ 0 (1)

where: 

 σത  is the equivalent normal stress, εୡഥ  is the equivalent creep strain, Eഥ is the equivalent elastic modulus and t is 

the creep time. 

Fig. l: Graphical illustration of the definition of elastic follow-up factor in R5 (2003). 

In Fig. 1, σ୅ and σ୆ are the stresses before and after the relaxation, respectively at peak stress of the system 

which is defined as initial and final state of stress relaxation in this paper. In R5 (2003), it is shown that the EFU factor 

may be estimated from: 

Z ൌ
∆ε̅୧୬ୡ ൅ ∆σത ′/Eഥ

∆σത ′/Eഥ
ൌ
∆ε̅ୡ
∆ε̅ୣ୪

 (2)

where ∆σത ′ is the variation of equivalent of normal stress which is relaxed, ∆ε̅୧୬ୡ is the accumulation of plastic 

strain during the relaxation time, ∆ε̅ୣ୪ is the equivalent elastic strain (equivalent elastic strain proportional to the 

relaxed stress,	∆ε̅ୣ୪ ൌ ∆σത ′/Eഥ ) and ∆ε̅ୡ is the equivalent creep strain. 

The position of the final point in Fig. 1 may vary depending on the amount of EFU in the system. There are two 

critical states in this Figure. Z=1 means the there is no EFU in the system. In this circumstance stress is relaxed without 

any plastic strain accumulation and this is called displacement controlled condition. Also Z ൌ ∞ expresses a fixed 

stress with plastic strain accumulation which corresponds to stress controlled conditions. The alternative interpretation 

for Z factor is presented by Kasahara (2001) based on strain at the initial and final of the stress relaxation as follows: 

Z ≡
ሺεሻ୤୧୬ୟ୪ െ ൫εୣ୯ୣ୪ ൯୤୧୬ୟ୪
ሺεሻ୧୬୧୲୧ୟ୪ െ ൫εୣ୯ୣ୪ ൯୤୧୬ୟ୪

wher ൫εୣ୯ୣ୪ ൯୤୧୬ୟ୪ ൌ ሺσሻ୤୧୬ୟ୪/E (3)
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The term ൫εୣ୯ୣ୪ ൯୤୧୬ୟ୪ is defined as the equivalent elastic strain at the end of relaxation process. Taleb (2013) 

proposed that the cyclic accumulation of the plastic strain at room temperature seems mainly due to creep. So it is 

possible that instead of the time variation, equation 1 be defined as the number of cycle (N). So Fig. 1 can be re-

mapped as follows which is drawn for mean stress in cyclic loading: 

Fig. 2: Graphical illustration of elastic follow-up in cyclic loading 

In Fig. 2, points A and B represent the start and final points in cyclic loading, respectively, ∆σത ′ is reduction of 

mean stress and ∆εത୰ୟ୲ୡ୦ is a ratcheting strain of the specimen. Therefore, equation 2 can be written as: 

Z ൌ
∆ε̅୰ୟ୲ୡ୦ ൅ ∆σത ′/Eഥ

∆σത ′/Eഥ
 (4)

Therefore 

Z
∆σത ′

Eഥ
ൌ ∆ε̅୰ୟ୲ୡ୦ ൅

∆σത ′

Eഥ
 (5)

So the ratcheting strain is calculated as: 

∆ε̅୰ୟ୲ୡ୦ ൌ െሺZ െ 1ሻ
∆σത ′

Eഥ
 (6)

Also equation 1 can be rewritten in the following form, 

∂ε̅୲୭୲ୟ୪
∂N

൅
Z
Eഥ
∂σത୒
∂N

ൌ 0 (7)

where N is the number of cycles, σത୒ is the reduction of mean stress during N cycles and ε̅୲୭୲ୟ୪ is the equivalent 
non-linear strain (i.e. sum of accumulated plastic strain and equivalent elastic strain). Based on Fig. 2 we have: 

ε̅୲୭୲ୟ୪ ൌ ε̅୰ୟ୲ୡ୦ ൅
∆σത ′

Eഥ
 (8)

 
Therefore, equation 7 is simplified as: 

∂ε̅୰
∂N

ൌ െሺZ െ 1ሻ
∂σത୒
Eഥ ∂N

 (9)

where, ε̅୰ is the accumulated plastic strain or Ratcheting strain. This equation is similar to equation 6. 

It must be noted that the strain is reduced in each cycle and the ratcheting strain is positive in equations 6 and 9. 

So, the ratcheting strain is defined as a function of reduced stress in each cycle and elastic follow-up factor, Z. 

In fact with the concept of elastic follow-up, a simplified method is proposed for describing the ratcheting behavior 

of a mechanical system. Many complex rules have been proposed in the literature for modeling the ratcheting behavior 

of a material (chaboche 2008). However, the ratcheting behavior of the specimen in the presence of EFU can be 
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described in a simple manner by equation 6. In this equation a non-linear event (ratcheting behavior) in the left side 

of the equation is described by the linear parameter (Z) on the right side.  

In the next section a set of experimental tests is conducted to verify this method. 

3. Specimens and material properties 

In this study, two-plates in series is used to investigate the effect of elastic follow-up on ratcheting behavior 

under displacement-control loading conditions which is shown in Fig. 3. 

Fig. 3: Two-plates in series 

This specimen is composed of a high-rigidity plate with elastic manner (plate 1) and a low-rigidity plate with 

plastic manner (plate 2). In this condition, EFU happens in the model. It has been proven that the EFU factor Z, in this 

case is as equation 10 and it is a function of the geometry that does not depend on constitutive equations or non-linear 

events of plate 2 (Kasahara 2001).  

Z ൌ 1 ൅
Kଶ
Kଵ

, K ൌ
EA
L

 (10)

where Kଶ and Kଵ are the stiffnesses of plate 2 and plate 1, respectively. 

The geometry of the specimen is determined in Table 1where L, H and t are the length, height and thickness, 

respectively.  

Table 1. Dimensions of the specimen 

L1 L2 t H1 H2 

5cm 4cm 3mm (2, 3, 4 and 5)cm 1cm 

Equation 10 can be written as: 

Z ൌ 1 ൅
EtHଶLଵ
EtHଵLଶ

ൌ 1 ൅ ൬
Hଶ
Hଵ
൰ ൬
Lଵ
Lଶ
൰ (11)

Therefore, different values of Z are 1.25, 1.31, 1.42 and 1.63, which are obtained by changing the height of plate 

1, H1. 

The specimens used in this study were made up of AISI 1045 steel and the material properties of this model were 

obtained by using an ASTM standard test procedure and the stress-strain curve for this material is shown in Fig. 4. 
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Based on Fig. 4, the value of elastic modulus was calculated to be E= 201GPa and the value of Poisson’s ratio is 

considered to be v=0.3. Moreover, the value of yield stress was computed to be σ୷ ൌ 324MPa. 

Fig. 4: Stress-strain curve 
 

4. Experimental procedure 

All of the tests were performed by a servo-hydraulic Zwick-Roell machine under cyclic displacement controlled 

loading conditions as shown in Fig. 5. This machine is equipped with a load cell with an accuracy of േ1ܰ. 

Furthermore, to determine a local plastic and elastic strain in the each specimen, two strain gauges were applied. Table 

2 shows the specifications of these strain gauges. The specimens and their strain gauges are shown in Fig. 6. 

Fig. 5: Zwick-Roell servo-hydraulic machine. 

Table 2 Strain gauge specifications 

Strain gauge model 
Range of strain 

gauge 
company 

Electrical resistance 

(Ohm) 

YEFLA-2 (10-15)% TML 120 

Fig. 6: Two-plate model with various EFU parameters 

Load condition shall be such that the plastic behavior occurs in plate 2 during the test time and in the meantime 

plate 1 is in the elastic region. So the amplitude and mean value of the induced displacement are designated to be 

0.4mm and 1mm, respectively. The loading frequency in per cycles is chosen to be 2 Hz. 

It should be noted that the displacement and force of the specimen are calculated by the test machine and the 

local strain in each plates is recorded by the data logging system. 

5. Results and discussion 

The main goal of the present study is to investigate the effects of elastic follow-up (elastic region around non-

linear events) on the ratcheting behavior of two-plate model under displacement-controlled loading. In fact, two points 

of view have been studied in this paper. In other words, the results were conducted based on the global points of view 

which looks at the whole system (elastic region and plastic one) and also local points of view of which looks only at 

the plastic portion. 
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Fig. 7 shows the hysteresis loops for two-plates in series under displacement-controlled conditions in global 

points of view according to data from Zwick-Roell machine for various EFU parameters. All of the tests were 

conducted under unique displacement-control loading conditions. As shown in this Figure, there is no cyclic 

accumulation of plastic strain observed in the whole system and because of the softening behavior of the material, the 

force is reduced.  

Fig. 7: Cyclic hysteresis loops for a specimen under displacement-control loading: (a) EFU factor is 1.25, (b) EFU 

factor is 1.31, (c) EFU factor is 1.42 and (d) EFU factor is 1.63 

By looking locally at the system it can be seen that the plastic strain is accumulated in plate 2. This phenomenon 

is due to the presence of elastic follow-up in the system. In this situation, the high-rigidity and low-stress portion of 

system (plate 1) enhances the force to the low-rigidity and high-stress one (plate 2) and as a result, plastic strain is 

accumulated in the low-rigidity part of system cycle by cycle. In fact displacement-control loading shows behavior 

similar to force-control loading. 

In Fig. 8, variation of plastic strain in plate 2 vs. the number of cycles is shown. These results are recorded by 

the data logging system and the strain gauges which are attached to the specimens. Based on this Figure, it can be seen 

that the plastic strain in plate 2 is accumulated cycle by cycle. In addition, the ratcheting strain of plate 2 by the 

proposed method (simplified method, i.e. equations 6 and 9) is shown in this Figure in comparison with the 

experimental tests. There is a good agreement between the simplified method and experimental results.  It must be 

noted that during the tests, plate 1 must remain in the elastic region. Fig. 9 shows the maximum stress of plate 1 during 

the test which is less than the Yield stress of the specimen (324 MPa). 

Fig. 8: Ratcheting strain of plate 2 versus the number of cycles: (a) EFU factor is 1.25, (b) EFU factor is 1.31, (c) 

EFU factor is 1.42 and (d) EFU factor is 1.63 

Fig. 9: Maximum elastic stress of plate 1 for various EFU parameters 

According to the Fig. 9, the elastic strain of plate 1 is reduced during the test. Also, with increasing the EFU 

parameter in the system, the amount of elastic strain and the rate of stress reduction are increased. 

To determine the effects of elastic follow-up on the behavior of material in cyclic loading, the ratcheting strain 

of plate 2 due to the number of cycles for various EFU parameters is shown in Fig. 10. Based on this Figure, the 



9 
 

ratcheting strain is increased with the decrease of EFU parameter (in equation 11 if the height of the elastic plate, H1, 

increases, then the EFU decreases). 

In Fig. 11, the variation of mean stress of plate 2 vs. the number of cycles is shown. The stress of plate 2 is 

reduced during the test. So the ratcheting strain by the simplified method (equation 6) is positive. Also, it is found 

from this Figure that if the EFU parameter is reduced, the stress of plate 2 is increased. 

Fig. 10: Ratcheting strain of plate 2 

Fig. 11: Mean stress plate 2 versus the number of cycles 

The effect of EFU on hysteresis loop in the global points of view for the first cycle is shown in the Fig. 12. This 

Figure reveals that as the EFU increases, the hysteresis loop moves downward. 

Fig. 12: Comparison between the simplified method and experimental results 

The variation of maximum elastic strain calculated by machine test in comparison with the data of strain gauge 

connected to plate 1 is shown in Fig. 13. This Figure shows a good agreement between the Zwick-Roell machine test 

data and strain gauge data. In addition, Fig. 14 shows the effect of EFU on the maximum elastic strain in plate 1. 

According to this Figure, as the elastic follow-up increases the amount of elastic strain and the rate of decreasing of 

elastic strain increase.    

Fig. 13: Variations of maximum elastic strain of plate 1 versus the number of cycles: (a) EFU factor is 1.25, (b) 

EFU factor is 1.31, (c) EFU factor is 1.42 and (d) EFU factor is 1.63 

Fig. 14: Effect of different values of EFU factor on the elastic strain of plate 1 

Based on the results of the present study and Taleb (1998) research works it is concluded that at the presence of 

elastic follow-up in the system, the cyclic accumulation of plastic strain or ratcheting phenomenon can occur even 

without a prescribed force. Also EFU has influenced the ratcheting behavior of the system. 

At the end of this section it must be noted that the simplified method in the present study is based on R5 (2003) 

code, (Eq. 2). The Graphical illustration of the definition of elastic follow-up factor in R5 (2003) was shown in Fig. 

1. So according to this definition, ∆σത ′ in equations 2, is the variation of stress at the critical point (in the non-linear 

events that the strain accumulation occurs) which is dependent on the starting situation (point A) and the final situation 
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(point B). In Fig. 1, point (A) may reach point (B) from different paths based on different loading conditions. So 

equation 2 is not dependent on the path and depends on the start and final conditions of loading. Therefore, this method 

can be extended for any loading conditions and Esq. 6 and 9 is proposed in general case. Also, it must be noted that 

the relevant EFU factor must be calculated for any loading conditions of any models and this involves complications. 

However in this study a uni-axial test has been considered in order to compare the results with experimental results. 

 

6. Conclusions 

In this paper a simplified method is proposed to investigate the effects of elastic follow-up on the ratcheting 

behavior of two-plates in series made up of AISI 1045 steel under displacement-control loading conditions. Moreover, 

a set of experimental tests were conducted by a servo-hydraulic Zwick-Roell machine in order to verify the proposed 

method. A data logging system and the strain gauge with the ability to work in cyclic loading were used to determine 

the local strain in two-plate model. The following results were obtained from this study: 

 Despite the similarity between the creep behavior and cyclic accumulation of plastic strain, a new 

simplified method is proposed to describe the ratcheting behavior in the case of elastic follow-up under 

the displacement controlled loading. 

 Based on Fig. 8, there is a good agreement between the ratcheting strain obtained by experimental tests 

and the proposed method (Equations 6 and 9). 

 In the presence of elastic follow-up phenomenon in two-plate model, the cyclic accumulation of plastic 

strain occurs under displacement-control loading conditions (Fig. 10) and the ratcheting strain is 

increased with the decrease of elastic follow-up parameter. 

 Fig. 12 reveals that as the elastic follow-up increases, the hysteresis loop moves downward. 

 According to Fig. 14, as the elastic follow-up increases the amount of elastic strain and the rate of 

decreasing of elastic strain increase.    
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Figure caption 

Fig. l: Graphical illustration of the definition of elastic follow-up factor in R5 (2003). 

Fig. 2: Graphical illustration of elastic follow-up in cyclic loading 

Fig. 3: Two-plates in series 

Fig. 4: Stress-strain curve 

Fig. 5: Zwick-Roell servo-hydraulic machine. 

Fig. 6: Two-plates with various EFU parameters 

Fig. 7: Cyclic hysteresis loops for a specimen under displacement-control loading: (a) EFU factor is 1.25, (b) EFU 
factor is 1.31, (c) EFU factor is 1.42 and (d) EFU factor is 1.63 

Fig. 8: The ratcheting strain of plate 2 versus the number of cycles: (a) EFU factor is 1.25, (b) EFU factor is 1.31, (c) 
EFU factor is 1.42 and (d) EFU factor is 1.63 

Fig. 9: Maximum elastic stress of plate 1 for various EFU parameters 

Fig. 10: the ratcheting strain of plate 2 

Fig. 11: Mean stress of plate 2 versus the number of cycles 

Fig. 12: Comparison between the simplified method and experimental results 

Fig. 13: Variation of maximum elastic strain of plate 1 versus the number of cycles: (a) EFU factor is 1.25, (b) 
EFU factor is 1.31, (c) EFU factor is 1.42 and (d) EFU factor is 1.63 

Fig. 14: Effect of different values of the EFU factor on elastic strain of plate 1 
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Fig. l: Graphical illustration of the definition of elastic follow-up factor in R5 (2003). 

 

Fig. 2: Graphical illustration of elastic follow-up in cyclic loading 
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Fig. 4: Stress-strain curve 
 

 

Fig. 5: Zwick-Roell servo-hydraulic machine. 
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Fig. 6: Two-plates with various EFU parameters 
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(c) (d) 

Fig. 7: Cyclic hysteresis loops for a specimen under displacement-control loading: (a) EFU factor is 1.25, (b) EFU 
factor is 1.31, (c) EFU factor is 1.42 and (d) EFU factor is 1.63 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8: The ratcheting strain of plate 2 versus the number of cycles: (a) EFU factor is 1.25, (b) EFU factor is 1.31, (c) 
EFU factor is 1.42 and (d) EFU factor is 1.63 
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Fig. 9: Maximum elastic stress of plate 1 for various EFU parameters 

 

Fig. 10: the ratcheting strain of plate 2 
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Fig. 11: Mean stress of plate 2 versus the number of cycles 

 

Fig. 12: Comparison between the simplified method and experimental results 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 13: Variation of maximum elastic strain of plate 1 versus the number of cycles: (a) EFU factor is 1.25, (b) 
EFU factor is 1.31, (c) EFU factor is 1.42 and (d) EFU factor is 1.63 
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Fig. 14: Effect of different values of the EFU factor on elastic strain of plate 1 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


