75 research outputs found

    Demonstration of geometric diabatic control of quantum states

    Full text link
    Geometric effects can play a pivotal role in streamlining quantum manipulation. We demonstrate a geometric diabatic control, that is, perfect tunneling between spin states in a diamond by a quadratic sweep of a driving field. The field sweep speed for the perfect tunneling is determined by the geometric amplitude factor and can be tuned arbitrarily. Our results are obtained by testing a quadratic version of Berry's twisted Landau-Zener model. This geometric tuning is robust over a wide parameter range. Our work provides a basis for quantum control in various systems, including condensed matter physics, quantum computation, and nuclear magnetic resonance

    Optical-power-dependent splitting of magnetic resonance in nitrogen-vacancy centers in diamond

    Full text link
    Nitrogen-vacancy (NV) centers in diamonds are a powerful tool for accurate magnetic field measurements. The key is precisely estimating the field-dependent splitting width of the optically detected magnetic resonance (ODMR) spectra of the NV centers. In this study, we investigate the optical power dependence of the ODMR spectra using NV ensemble in nanodiamonds (NDs) and a single-crystal bulk diamond. We find that the splitting width exponentially decays and is saturated as the optical power increases. Comparison between NDs and a bulk sample shows that while the decay amplitude is sample-dependent, the optical power at which the decay saturates is almost sample-independent. We propose that this unexpected phenomenon is an intrinsic property of the NV center due to non-axisymmetry deformation or impurities. Our finding indicates that diamonds with less deformation are advantageous for accurate magnetic field measurements.Comment: 9 pages, 7 figure

    Long Rayleigh length confocal microscope: A fast evaluation tool for obtaining quantum properties of color centers

    Full text link
    Color centers in wide band-gap semiconductors, which have superior quantum properties even at room temperature and atmospheric pressure, have been actively applied to quantum sensing devices. Characterization of the quantum properties of the color centers in the semiconductor materials and ensuring that these properties are uniform over a wide area are key issues for developing quantum sensing devices based on color center. In this article, we will describe the principle and performance of a newly developed confocal microscope system with a long Rayleigh length (LRCFM). This system can characterize a wider area faster than the confocal microscope systems commonly used for color center evaluation

    Perfect alignment and preferential orientation of nitrogen-vacancy centers during CVD growth of diamond on (111) surfaces

    Full text link
    Synthetic diamond production is key to the development of quantum metrology and quantum information applications of diamond. The major quantum sensor and qubit candidate in diamond is the nitrogen-vacancy (NV) color center. This lattice defect comes in four different crystallographic orientations leading to an intrinsic inhomogeneity among NV centers that is undesirable in some applications. Here, we report a microwave plasma-assisted chemical vapor decomposition (MPCVD) diamond growth technique on (111)-oriented substrates that yields perfect alignment (94±294\pm2%) of as-grown NV centers along a single crystallographic direction. In addition, clear evidence is found that the majority (74±474\pm4%) of the aligned NV centers were formed by the nitrogen being first included in the (111) growth surface and then followed by the formation of a neighboring vacancy on top. The achieved homogeneity of the grown NV centers will tremendously benefit quantum information and metrology applications.Comment: 6 pages, 4 figures, changes to previous version: added acknowledgemen

    キンゾク/SiC オヨビ キンゾク/Si カイメン ノ Schottky ショウヘキ ノ ケイセイ キコウ ニカンスル ケンキュウ

    Get PDF
    筑波大学博士 (工学) 学位論文・平成10年3月23日授与 (甲第1884号
    corecore