Optical-power-dependent splitting of magnetic resonance in nitrogen-vacancy centers in diamond

Abstract

Nitrogen-vacancy (NV) centers in diamonds are a powerful tool for accurate magnetic field measurements. The key is precisely estimating the field-dependent splitting width of the optically detected magnetic resonance (ODMR) spectra of the NV centers. In this study, we investigate the optical power dependence of the ODMR spectra using NV ensemble in nanodiamonds (NDs) and a single-crystal bulk diamond. We find that the splitting width exponentially decays and is saturated as the optical power increases. Comparison between NDs and a bulk sample shows that while the decay amplitude is sample-dependent, the optical power at which the decay saturates is almost sample-independent. We propose that this unexpected phenomenon is an intrinsic property of the NV center due to non-axisymmetry deformation or impurities. Our finding indicates that diamonds with less deformation are advantageous for accurate magnetic field measurements.Comment: 9 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions