24 research outputs found

    XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data.

    Get PDF
    BACKGROUND: Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models to study various biological and preclinical aspects of cancer. However, analyses of their RNA and DNA profiles are challenging, because they comprise reads not only from the grafted human cancer but also from the murine host. The reads of murine origin result in false positives in mutation analysis of DNA samples and obscure gene expression levels when sequencing RNA. However, currently available algorithms are limited and improvements in accuracy and ease of use are necessary. RESULTS: We developed the R-package XenofilteR, which separates mouse from human sequence reads based on the edit-distance between a sequence read and reference genome. To assess the accuracy of XenofilteR, we generated sequence data by in silico mixing of mouse and human DNA sequence data. These analyses revealed that XenofilteR removes > 99.9% of sequence reads of mouse origin while retaining human sequences. This allowed for mutation analysis of xenograft samples with accurate variant allele frequencies, and retrieved all non-synonymous somatic tumor mutations. CONCLUSIONS: XenofilteR accurately dissects RNA and DNA sequences from mouse and human origin, thereby outperforming currently available tools. XenofilteR is open source and available at https://github.com/PeeperLab/XenofilteR

    Laparoscopy to predict the result of primary cytoreductive surgery in advanced ovarian cancer patients (LapOvCa-trial): a multicentre randomized controlled study

    Get PDF
    Contains fulltext : 108486.pdf (publisher's version ) (Open Access)BACKGROUND: Standard treatment of advanced ovarian cancer is surgery and chemotherapy. The goal of surgery is to remove all macroscopic tumour, as the amount of residual tumour is the most important prognostic factor for survival. When removal off all tumour is considered not feasible, neoadjuvant chemotherapy (NACT) in combination with interval debulking surgery (IDS) is performed. Current methods of staging are not always accurate in predicting surgical outcome, since approximately 40% of patients will have more than 1 cm residual tumour after primary debulking surgery (PDS). In this study we aim to assess whether adding laparoscopy to the diagnostic work-up of patients suspected of advanced ovarian carcinoma may prevent unsuccessful primary debulking surgery for ovarian cancer. METHODS: Multicentre randomized controlled trial, including all gynaecologic oncologic centres in the Netherlands and their affiliated hospitals. Patients are eligible when they are planned for PDS after conventional staging. Participants are randomized between direct PDS or additional diagnostic laparoscopy. Depending on the result of laparoscopy patients are treated by PDS within three weeks, followed by six courses of platinum based chemotherapy or with NACT and IDS 3-4 weeks after three courses of chemotherapy, followed by another three courses of chemotherapy. Primary outcome measure is the proportion of PDS's leaving more than one centimetre tumour residual in each arm. In total 200 patients will be randomized. Data will be analysed according to intention to treat. DISCUSSION: Patients who have disease considered to be resectable to less than one centimetre should undergo PDS to improve prognosis. However, there is a need for better diagnostic procedures because the current number of debulking surgeries leaving more than one centimetre residual tumour is still high. Laparoscopy before starting treatment for ovarian cancer can be an additional diagnostic tool to predict the outcome of PDS. Despite the absence of strong evidence and despite the possible complications, laparoscopy is already implemented in many countries. We propose a randomized multicentre trial to provide evidence on the effectiveness of laparoscopy before primary surgery for advanced stage ovarian cancer patients. TRIAL REGISTRATION: Netherlands Trial Register number NTR2644

    Tailor-made implant surfaces : the effects of surface roughness and calcium phosphate coating

    Get PDF
    Contains fulltext : 19095.pdf (publisher's version ) (Open Access)In order to be able to design medical implants that elicit a specific tissue response, extensive knowledge of the interaction of an implant material with its surrounding tissue is essential. The surface characteristics of the material, as well as the cellular characteristics of the tissue govern the precise interaction of a material with the tissue. Although many implant materials show a favorable bone response, the mechanisms involved in this bone response are still poorly understood. The studies described in this thesis are aimed at elucidating the mechanisms by which RF magnetron sputtered calcium phosphate (CaP) coatings and implant surface roughness affect the bone response. The studies showed that CaP coating crystallinity has a clear effect on osteogenic cell growth and differentiation. Amorphous CaP coatings inhibited cell growth and differentiation. This was probably due to the extensive dissolution shown by these coatings. On the other hand, crystalline CaP coatings enhanced osteogenic cell growth and differentiation compared to titanium substrates. Surface roughness also affected the osteogenic cells, but not as much as the effect of the presence of a crystalline coating. In subsequent studies, the effect of crystalline CaP coating and surface roughness on osteogenic cell attachment, spreading and integrin expression was studied. We found that differences in substrate characteristics can affect cell attachment and spreading, although the precise effect was cell-type dependent. Integrin expression was also influenced by the substrate surface, but the effect was limited. We have to notice that different methods to generate CaP coatings will lead to coatings with completely different characteristics, which can markedly influence the tissue reaction. Further, different methods of measuring surface roughness can result in different data. A standardized method for measuring and describing surface roughness will have to be developed. Also, complete characterization in terms of chemical composition, crystallinity, but also method of manufacturing is very important when developing and reporting about CaP coated implants. The goal of these and subsequent studies is to get more insight into the bone-biomaterial response. This will enable the manufacturing of tailor-made implants that generate a predicted tissue response149 p

    The Use of Mass Spectrometry Imaging to Predict Treatment Response of Patient-Derived Xenograft Models of Triple-Negative Breast Cancer

    No full text
    In recent years, mass spectrometry imaging (MSI) has been shown to be a promising technique in oncology. The effective application of MSI, however, is hampered by the complexity of the generated data. Bioinformatic approaches that reduce the complexity of these data are needed for the effective use in a (bio)­medical setting. This holds especially for the analysis of tissue microarrays (TMA), which consist of hundreds of small tissue cores. Here we present an approach that combines MSI on tissue microarrays with principal component linear discriminant analysis (PCA-LDA) to predict treatment response. The feasibility of such an approach was evaluated on a set of patient-derived xenograft models of triple-negative breast cancer (TNBC). PCA-LDA was used to classify TNBC tumor tissues based on the proteomic information obtained with matrix-assisted laser desorption ionization (MALDI) MSI from the TMA surface. Classifiers based on two different tissue microarrays from the same tumor models showed overall classification accuracies between 59 and 77%, as determined by cross-validation. Reproducibility tests revealed that the two models were similar. A clear effect of intratumor heterogeneity of the classification scores was observed. These results demonstrate that the analysis of MALDI-MSI data by PCA-LDA is a valuable approach for the classification of treatment response and tumor heterogeneity in breast cancer

    Malignant transformation of Slp65-deficient pre-B cells involves disruption of the Arf-Mdm2-p53 tumor suppressor pathway

    No full text
    The adapter protein Slp65 is a key component of the precursor-B (pre-B) cell receptor. Slp65-deficient mice spontaneously develop pre-B cell leukemia, but the mechanism by which Slp65(-/-) pre-B cells become malignant is unknown. Loss of Btk, a Tec-family kinase that cooperates with Slp65 as a tumor suppressor, synergizes with deregulation of the c-Myc oncogene during lymphoma formation. Here, we report that the presence of the immunoglobulin heavy chain transgene V(H)81X prevented tumor development in Btk(-/-)Slp65(-/-) mice. This finding paralleled the reported effect of a human immunoglobulin heavy chain transgene on lymphoma development in E mu-myc mice, expressing transgenic c-Myc. Because activation of c-Myc strongly selects for spontaneous inactivation of the p19(Arf)-Mdm2-p53 tumor suppressor pathway, we investigated whether disruption of this pathway is a common alteration in Slp65(-/-) pre-B cell tumors. We found that combined loss of Slp65 and p53 in mice transformed pre-B cells very efficiently. Aberrations in p19(Arf), Mdm2, or p53 expression were found in all Slp65(-/-)(n = 17) and Btk(-/-)Slp65(-/-)(n = 32) pre-B cell leukemias analyzed. In addition, 9 of 10 p53(-/-)Slp65(-/-) pre-B cell leukemias manifested significant Mdm2 protein expression. These data indicate that malignant transformation of Slp65(-/-) pre-B cells involves disruption of the p19(Arf)-Mdm2-p53 tumor suppressor pathway. (Blood. 2010; 115: 1385-1393

    Malignant transformation of Slp65-deficient pre-B cells involves disruption of the Arf-Mdm2-p53 tumor suppressor pathway

    No full text
    The adapter protein Slp65 is a key component of the precursor-B (pre-B) cell receptor. Slp65-deficient mice spontaneously develop pre-B cell leukemia, but the mechanism by which Slp65-/- pre-B cells become malignant is unknown. Loss of Btk, a Tec-family kinase that cooperates with Slp65 as a tumor suppressor, synergizes with deregulation of the c-Myc oncogene during lymphoma formation. Here, we report that the presence of the immunoglobulin heavy chain transgene VH81X prevented tumor development in Btk -/-Slp65-/- mice. This finding paralleled the reported effect of a human immunoglobulin heavy chain transgene on lymphoma development in Eμ-myc mice, expressing transgenic c-Myc. Because activation of c-Myc strongly selects for spontaneous inactivation of the p19Arf-Mdm2-p53 tumor suppressor pathway, we investigated whether disruption of this pathway is a common alteration in Slp65-/- pre-B cell tumors. We found that combined loss of Slp65 and p53 in mice transformed pre-B cells very efficiently. Aberrations in p19Arf, Mdm2, or p53 expression were found in all Slp65-/-(n = 17)andBtk-/-Slp65-/-(n = 32) pre-B cell leukemias analyzed. In addition, 9 of 10 p53-/-Slp65 -/- pre-B cell leukemias manifested significant Mdm2 protein expression. These data indicate that malignant transformation of Slp65 -/- pre-B cells involves disruption of the p19Arf-Mdm2-p53 tumor suppressor pathway

    Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways

    Get PDF
    Stromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely noncoding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent antiviral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine antiviral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy-resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of antiviral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate crosstalk with BrCa cells by utilizing exosomes to instigate antiviral signaling. This expands BrCa subpopulations adept at resisting therapy and reinitiating tumor growth

    Mechanisms of therapy resistance in patient-derived xenograft models of brca1-deficient breast cancer

    No full text
    Background: Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1- mutated and BRCA1-methylated triple-negative breast cancer. Methods: A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. Results: BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. Conclusions: In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms

    Mechanisms of therapy resistance in patient-derived xenograft models of brca1-deficient breast cancer

    No full text
    Background: Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1- mutated and BRCA1-methylated triple-negative breast cancer. Methods: A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. Results: BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. Conclusions: In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms
    corecore