
SOFTWARE Open Access

XenofilteR: computational deconvolution
of mouse and human reads in tumor
xenograft sequence data
Roelof J. C. Kluin1, Kristel Kemper2, Thomas Kuilman2, Julian R. de Ruiter3,4, Vivek Iyer5, Josep V. Forment6,9,
Paulien Cornelissen-Steijger2, Iris de Rink1, Petra ter Brugge3, Ji-Ying Song7, Sjoerd Klarenbeek7, Ultan McDermott8,
Jos Jonkers3, Arno Velds1, David J. Adams4, Daniel S. Peeper2* and Oscar Krijgsman2*

Abstract

Background: Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models
to study various biological and preclinical aspects of cancer. However, analyses of their RNA and DNA profiles are
challenging, because they comprise reads not only from the grafted human cancer but also from the murine host.
The reads of murine origin result in false positives in mutation analysis of DNA samples and obscure gene
expression levels when sequencing RNA. However, currently available algorithms are limited and improvements in
accuracy and ease of use are necessary.

Results: We developed the R-package XenofilteR, which separates mouse from human sequence reads based on
the edit-distance between a sequence read and reference genome. To assess the accuracy of XenofilteR, we
generated sequence data by in silico mixing of mouse and human DNA sequence data. These analyses revealed
that XenofilteR removes > 99.9% of sequence reads of mouse origin while retaining human sequences. This allowed
for mutation analysis of xenograft samples with accurate variant allele frequencies, and retrieved all non-
synonymous somatic tumor mutations.

Conclusions: XenofilteR accurately dissects RNA and DNA sequences from mouse and human origin, thereby
outperforming currently available tools. XenofilteR is open source and available at https://github.com/PeeperLab/
XenofilteR.

Keywords: Sequencing, Xenograft, Cancer, Next-generation sequencing (NGS), Melanoma, Breast cancer, Patient-
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Background
Cancer research heavily relies on model systems such as
cell lines. These cell lines have typically been cultured
for decades and only partially recapitulate the genetic
features of patient tumors [1]. More advanced clinical
cancer models are the cell line-derived xenograft and
patient-derived xenografts (PDX) [2]. With this approach,
either a cancer cell line or a patient tumor sample is
injected or transplanted into a host, generally immunode-
ficient mice. In these xenografts, the complex interactions

between the tumor and its microenvironment are at least
partially recapitulated, as is the heterogeneity in tumors in
the case of PDX [3–8]. For these reasons, xenograft
models might serve as a better proxy for human tumor
samples and have become indispensable for develop-
ment, validation and optimization of cancer treatment
regimens [1, 2, 9]. Despite its limitations [8, 10], the
wide applicability of PDX, and more generally of tumor
xenografts, is reflected by tens of thousands publica-
tions describing numerous biological, mechanistic and
preclinical applications [11–16].
In spite of this tremendous popularity, sequence ana-

lysis of RNA or DNA from tumor xenograft and PDX
samples is challenging: the sequence data contain not
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only DNA and RNA from the grafted human tumor cells
but also from the mouse, mostly due to infiltrating stro-
mal cells [17]. When sequencing the combined ‘bulk
tumor’ DNA, sequence reads originating from the
mouse result in false positive single nucleotide variants
(SNV) when calling mutations [18]. Similar challenges
are observed when sequencing RNA: beside false positive
SNVs, the gene expression levels are often obscured by
reads that derive from mouse cells [19]. Despite
mouse-derived sequence reads representing a potential
source of bias in sequence analysis of tumor xenografts,
the number of tools to solve this important issue is sur-
prisingly limited.
Some solutions have been proposed to bioinforma-

tically remove mouse host sequences from the ana-
lysis. The most straightforward method is to map all
reads first to the mouse reference genome. Sequence
reads failing to map are remapped to the human ref-
erence, which is followed by standard downstream
analyses [20]. A major disadvantage of this method
is that human reads from evolutionary conserved re-
gions will also map to the mouse reference genome.
Such reads are inadvertently removed from further
analysis, which erodes the read depth and thus sensi-
tivity of variant detection in DNA sequencing. Simi-
larly, it erodes gene expression estimates (counts)
when sequencing RNA.
An improved version of this concept, developed for

RNA sequence data but also applicable to DNA se-
quence data, uses a so-called k-mer approach with a
mixed mouse/human reference set [19]. This method
catalogs for every possible sequence of length k, its pres-
ence in the human and mouse reference genome se-
quences. If a k-mer is unique to one reference, its
occurrence in sequencing data indicates the species’ ori-
gin. Distinction between conserved regions, which are
also the most problematic in cross strain filtering, would
require long k-mers. However, k-mer elongation rapidly
increases computer memory requirements and is there-
fore less feasible.
Deconvolution based on the alignments of sequence

reads to a human and mouse reference genome separ-
ately has also been proposed [21, 22]. This method uti-
lizes the alignment scores of each sequence read to the
mouse and human reference genome to categorize reads
as human or mouse. Both methods shows a much better
performance as compared to filtering for reads that do
not map to the mouse reference genome [19]. However,
the number of supported, open-source solutions are
limited and improvements in accuracy and ease of use
are necessary.
The challenges in the analysis of sequence data from

xenografts and the limited availability of tools motivated
us to firstly provide a detailed study into the effect of

mouse reads on subsequent analyses. Furthermore, we
set out to develop a method for accurate filtering on
species’ origin using a procedure that is easily applicable
in bio-informatics pipelines to improve analysis of DNA
and RNA sequence data from xenografts.

Implementation
XenofilteR is an easy-to-use R-package for deconvolu-
tion of mouse and human sequence reads form xeno-
graft sequence data. XenofilteR takes a file with 2 bam
files (e.g. BWA [23], TopHat [24], STAR [25]) for each
sample as input: reads aligned to the human reference
and reads aligned to the mouse reference genome
(Fig. 1). XenofilteR does not require a specific order of
the sequence reads for the input BAM files. Default out-
put of XenofilteR is a new bam file with the sequence
reads classified as human. Optionally, a second bam file
can be generated with the sequence reads classified as
mouse.

Filtering
Sequence reads that only map to a single reference
genome are classified to that specific organism. For
reads that map to both the human and mouse refer-
ence genome the edit distance is calculated by sum-
ming soft clips, insertions (both derived from the
CIGAR string) and the number of mismatches (bam
tag: ‘NM’) (Fig. 1). For paired-end sequencing, the
edit distance of the forward and reverse read is aver-
aged. Sequence reads with an equal edit distance to
mouse as well as human are not in either bam file as
these cannot be assigned. Assignment of reads (or
read pairs) to either human or mouse is based on the
edit distance, with reads having a lower edit distance
for the reference genome of a species being classified
as originating from that species.
Although sequence reads generally map to one

specific location on the genome, some reads can be
mapped reasonably well to multiple places on the gen-
ome, these mappings are called secondary alignments.
In XenofilteR, the edit distance is calculated on the
primary alignments only. All secondary alignments are
either kept in the filtered output or removed depend-
ing on the classification based on the primary align-
ment. Classification can further be fine-tuned by
setting a maximum number for the edit distance (de-
fault = 4) and a penalty for unmapped reads in case of
paired-end sequencing (default = 8).

Parallel implementation and computational time
XenofilteR uses functionality from GenomicAlign-
ments and Rsamtools [26] for reading and manipulat-
ing bam files. Parallel analysis is implemented in
XenofilteR package using BiocParallel. As XenofilteR
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Fig. 1 Overview of XenofilteR workflow. Sequence reads (fastq) from PDX are mapped with the appropriate aligner (e.g. BWA, Tophat, STAR) to both a
human and mouse reference genome. Sequence reads that only map to a single reference genome are classified to that specific organism. For seqeunce
reads that map to both the human and mouse reference genome the edit distance is calculated which is defined by the number of base pairs different
between the sequence read and the reference genome. Next, XenofilteR classifies the sequence reads as ‘human’ or ‘mouse’ based on the edit distance

Kluin et al. BMC Bioinformatics  (2018) 19:366 Page 3 of 15



only evaluates the sequences that map to both refer-
ence genomes and requires only little information
from the bam files, we were able to minimize the
CPU time and memory needed for analysis. Xenofil-
teR can be run on a desktop computer in single
sample mode and in parallel on computer servers. Exam-
ples of code to run XenofilteR and further documentation
is available at (https://github.com/PeeperLab/XenofilteR).

Results
Mouse sequence reads map to specific regions on the
human genome
In xenograft models, human tumors are grown in a
murine host. Sequence data of these tumor xenografts
commonly contain reads that originate from the host.
To investigate which genes and exons are likely to be af-
fected by mouse reads, we mapped whole genome DNA
sequence data (WGS) of three mouse strains (NOD/
ShiLtJ, BALB/cJ and C57BL/6NJ) [27, 28] to a human
reference [29]. On average, 0.3% of mouse reads mapped
to the human reference genome, of which 18–20%
overlapped with an exon of a protein-coding gene. A high
correlation was observed in the number of reads mapped
to exons between different mouse strains (R2 = 0.98,
Fig. 2a). Mouse reads mapped to specific regions of the
genome with ~ 2000 (out of 200.000 exons in total) exons
exceeding 100 reads, including exons from known cancer
driver genes [30] (Fig. 2b, Additional file 1: Table S1).
Mapping of BALB/cJ WGS data to the human reference
revealed that 13% of exons have at least a single mouse
read mapped, affecting 43% of genes in total (Fig. 2b). For
example, out of the ten exons of BCL9, four exons had
over 100 mapped reads mapped, the remaining six had
only a few reads or none at all (Fig. 2d). Similar results
were observed for other cancer-related genes such as
PTEN (Fig. 2c).
Also, RNA sequence data of the same three mouse

strains (NOD/ShiLtJ, BALB/cJ, C57BL/6NJ) [27, 28] were
mapped to the human reference genome. As the sequence
similarity between mouse and human is highest for the
coding regions, the number of RNA sequencing reads that
map to the human reference is much higher (4–8% of
reads) compared to WGS. The read count per gene from
the RNA sequence data correlated (R2 = 0.52) with read
count per gene in the WGS (Fig. 2e), indicating that the
same exonic regions are affected with WGS and RNAseq.
Although mouse RNA sequencing and WGS data

clearly showed that mouse reads can map to the human
reference genome, both methods were performed on the
complete RNA and DNA pools of the sample. Whole
exome sequencing (WES) on the other hand, includes
an enrichment step using baits designed to target exons
on the human reference genome. To test the affinity of
mouse sequence reads to the human baits, we sequenced

eight mouse DNA samples enriched with a human ex-
ome kit (Illumina, SureSelect Human Exon Kit 50 Mb
capture set, Agilent, G3362). On average, 29.2 million
reads were sequenced per sample of which ~ 11% could
be mapped to the human reference genome. Further-
more, 85–86% of mapped reads did so to an exon. These
findings were highly reproducible, with a high correl-
ation in exon read count between samples (R2 = 0.93–
0.98) but also with the results from WGS (BALB/cJ,
R2 = ~ 0.47), albeit a higher average read count was
observed per exon with WES (Fig. 2f ). To summarize,
mouse sequence reads map to specific regions on the
human genome, an issue that we have observed for
RNA sequencing, WGS and WES.

Sequence reads of mouse origin affect downstream
analysis of xenografts
In recognition that mouse reads can map to the hu-
man reference genome, we set out to determine the
effect that these reads have on analyses of eight PDX
samples [14]. For each sample, the percentage of
mouse stroma was estimated by two pathologists and
averaged (Additional file 2: Table S2). Mutation ana-
lysis on the WES data of the PDX samples revealed an
extremely high number of single nucleotide variants
(SNVs), especially in the samples with a high percent-
age of mouse stroma. A direct comparison of PDX
samples containing a high number of mouse sequence
reads, mapped to the human reference, revealed that
many of the SNVs in the samples overlap with SNV
that originate from mouse, for example in one of the
exons of PTEN (Fig. 3a).
Genome-wide mutation analysis on the mouse WGS

data mapped to the human reference identified 101,068
SNVs (19.5% exonic). Intersection of this list with the
lists of SNVs detected in the PDX samples suggested
that many SNVs detected in PDX samples are derived
from reads that originate from mouse cells. In the PDX
sample M005.X1 (~ 25% mouse stroma), 73,705 SNVs
were detected, of which 67,194 overlapped with the
101,068 SNVs from mouse reads mapped to the human
reference. The PDX sample M029.X1 (~ 1% mouse stroma)
had a much lower total number of SNVs, only 460 detected
SNVs in the PDX samples overlap with the mouse SNVs
(Fig. 3b). In conclusion, sequence reads that originate from
mouse have a large effect on mutation calling on samples
derived from PDX.

The edit distance can be used to classify sequence reads
Accurate assignment of reads to either mouse or human
is pivotal to assure high quality downstream analyses.
Currently available tools generally use the mapping of
reads to a combined reference genome or to both ge-
nomes as a classification strategy [18, 19]. However, due
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to the sequence similarity between mouse and human,
the mapping itself might not provide the optimal distinc-
tion between reads of human and mouse origin.

A striking distinction between the alignments to
mouse and human reference was the difference in ‘edit
distance’: the number of base pairs in a given mapped
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Fig. 2 Mapping of mouse DNA and RNA to the human reference genome. a: Pair-wise comparison of the number of sequence reads per exon
from mouse WGS (BALB_Cj versus C57BL_6NJ) mapped to a human reference. b: Number of reads (log10) that originate from mouse that
mapped to the human reference, sorted by reads count; per exon (left panel) and per gene (right). c: Number of mouse reads from WGS that
mapped to the human gene PTEN. d Number of mouse reads from WGS that mapped to the human gene BCL9. e: Comparison for read count of
BALB_Cj RNAseq and WGS, both mapped to a human reference. Read count is corrected for exon length. f: Comparison for exon read count of
WGS and WES of mouse DNA, both mapped to a human reference. WES on mouse DNA was performed with a human-specific enrichment kit
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Fig. 3 The effect of mouse reads in PDX samples. a: Integrative Genome Viewer (IGV) image of exon 5 of PTEN. Top panel shows mouse DNA
mapped to the human reference genome, middle panel melanoma PDX sample M005.X1 with 25% mouse stroma and bottom panel melanoma
PDX sample M029.X1 with 1% of mouse stroma. Each grey horizontal line represents a single sequence read. Base pair differences between
human reference genome and sequence reads (SNV) are indicated with a color (depending on the base pair change). b: Overlap between
somatic SNVs detected in PDX, with high percentage mouse stroma (M005.X1), and low percentage of mouse stroma (M029.X1). c. The edit
distance of sequence reads from mouse DNA aligned to a human reference genome (top panel) and from human DNA mapped to a human
reference genome (bottom panel)
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read that discord with the reference genome. To illus-
trate this difference, we used two samples, a WES of a
patient melanoma sample (M032) [8] and a WES of
mouse DNA enriched in silico with human baits to mimic
PDX samples. Both samples were mapped to the human
reference genome. Only 4% of mouse DNA reads showed
an edit distance of 1 or lower, as opposed to 96% of
human DNA reads (Fig. 3c). Thus, the edit distance of a
sequence read can be used to filter mouse from human
sequence reads.
Based on these observations, we developed an algo-

rithm, called XenofilteR, which calculates the edit distance
for each read that maps to both the human and mouse
reference genomes (Fig. 1). The edit distance is calculated
by summing soft clips, insertions (both derived from the
CIGAR string) and the number of mismatches (bam tag:
‘NM’). The reference genome to which a specific sequence
read has the lowest edit distance is considered as the
species of origin for that read. By differentiating each se-
quence read in the original input bam files, XenofilteR
generates a new bam file, which contains the sequence
reads classified as human only. Conversely, XenofilteR can
also output the bam file with all reads classified as mouse.
XenofilteR is programmed in R and publically available
from GitHub (https://github.com/PeeperLab/XenofilteR).

XenofilteR accurately filters mouse reads from human
reads from in silico-mixed datasets
To validate this computational method and compare the
results to other available methods, we generated fastq files
containing both mouse [27, 28] and human [29] WGS
reads. We generated paired-end and single-end fastq files
of different sequence length and multiple percentages of
mouse cells (Fig. 4a and Additional file 3: Table S3). These
files were generated for two mouse strains (BALB/cJ,
C57BL/6NJ; a full description on how the files were gener-
ated is available in the methods section). The combined
fastq files were mapped to both human and mouse refer-
ences (C57BL/6NJ). We applied five tools to the generated
data: XenofilteR Strict filtering (filtering of all reads that
map to mouse), bamcmp [21], BBsplit [22], Xenome [19]
and XenofilteR (all with default settings). Since the origin
of each read was known, we could calculate the accuracy
of each of the three methods. Because the C57BL/6NJ
mouse strain is identical to the mm10 reference gen-
ome the most accurate classification was reached with
this mouse strain compared to BALB/cJ (Additional
file 3: Table S3).
Results from the dataset with mixed human and BALB/

cJ reads strain shows that for all tools true and false posi-
tive classification of reads as human depend on both se-
quence length and on whether sequencing was paired-end,
but not on the initial percentage of mouse reads in the
mixture (Fig. 4b and Additional file 3: Table S3). Although

the Strict filtering method showed the least misclassified
mouse reads (0.01%), it was accompanied by a severe
decrease in the number of correctly assigned human reads
(Fig. 4b). By contrast, both XenofilteR and Xenome cor-
rectly identified almost all mouse reads with, respectively,
less than 0.02 and 0.04% of mouse sequence reads
remaining after filtering. Bamcmp retained the highest
number of human reads but also kept a high percentage of
mouse sequence reads, especially for the paired-end se-
quence runs (> 0.20%). Similar results were observed for
BBsplit, except that a high number of mouse sequence
reads were kept both with single-end and paired-end
sequencing (Fig. 4b and Additional file 3: Table S3).
In addition to the WGS of in silico mixed samples, we

also determined the effect of filtering on the detection of
somatic variants in a cancer sample. For this purpose,
we mixed in silico WES sequence reads of a patient
tumor sample M032 [8] with those obtained from mouse
WES, with both sequence libraries generated using the
same human exome enrichment kit, in a 3:1 ratio. This
sample was processed in parallel with Bamcmp, Xenome
and XenofilteR. Due to the high number of erroneously
filtered sequence reads the performance of both the
Strict Filtering method and BBsplit was not further in-
vestigated. All three methods were run with default
settings followed by mutation calling (GATK). In the ori-
ginal tumor sample, 419 somatic SNVs were detected; in
the mixed sample, without exclusion of mouse reads, a
total of 107,826 SNVs were observed, comparable to the
number of SNVs in PDX sample M005.X1. Filtering with
Bamcmp, Xenome or XenofilteR resulted in 547, 449 and
438 SNVs, respectively. The 438 SNVs remaining after
XenofilteR filtering included all 419 SNVs identified in the
original samples, with almost identical VAFs (Fig. 4c), and
an additional 15 false positive SNVs (Fig. 4d). This is an
improvement over Bamcmp and Xenome, which both
produced more false positives, 128 and 30 respectively
(Fig. 4d). In addition, for two SNVs, the VAF was lower
after filtering compared to the original tumor (Fig. 4c).
Thus, when filtering samples with in silico-mixed
mouse and human sequence reads, XenofilteR improves
on Bamcmp and Xenome both regarding total number
of filtered sequence reads and in retaining mutations of
human origin.

XenofilteR accurately filters mouse reads from human
reads in PDX samples
In addition to in silico-mixed samples, we tested Xeno-
filteR on PDX samples and compared the results to
those obtained with the best performing method on the
in silico data, Xenome. Patient tumor, normal and PDX
were analyzed by WES for three breast cancer samples.
Mutations were called on these samples after XenofilteR
or Xenome filtering (Fig. 5a). For each SNV identified in

Kluin et al. BMC Bioinformatics  (2018) 19:366 Page 7 of 15

https://github.com/PeeperLab/XenofilteR


A

B

C

D

Fig. 4 Performance of strict filtering, bamcmp, Xenome and XenofilteR on in silico mixed samples. a. Schematic overview of samples, dilutions
and sequence read type for generation of the samples mixed in silico. b. Percentages of sequence reads remaining per species after filtering with
strict filtering, bamcmp, Xenome and XenofilteR options for the 50:50, mouse (BALB/Cj):human (NA12878) WGS mixes. c. Variant Allele Frequency
(VAF) of the SNVs in the original sample compared to unfiltered and filtered samples after in silico-mixing with mouse sequence reads. d. Venn
diagrams of non-synonymous mutations in the original sample with filtered and unfiltered samples
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the filtered PDX, we traced whether it was either also
found in the patient tumor (Fig. 5a; black), in the
matched normal or SNP database (Fig. 5a; green) or not
found in either blood, SNP database or tumor sample
(Fig. 5a; red). This last group represents either false posi-
tives or a difference between PDX and tumor (e.g. due

to tumor heterogeneity or alternate sequence depth be-
tween patient tumor and PDX). However, similar to
mutation calling in the in silico-mixed sample, the VAF
was much lower for several mutations identified with
Xenome compared to XenofilteR. This was reflected not
only by the VAF but also by the read counts, on which

A

C

D
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Fig. 5 Performance of XenofilteR and Xenome on PDX samples. a: Mutation calling on exome sequence data of a breast cancer PDX sample. The
variant allele frequency (VAF) was plotted after filtering with XenofilteR (x-axis) and Xenome (y-axis). Plotted in black are mutations also detected
in the patient sample, in green known SNPs and in red SNVs detected in the PDX only. b: Read count of each SNV used to calculate the VAF
from A for Xenome and XenofilteR. c: Mutation calling on targeted sequencing of melanoma samples. In green all known SNPs are indicated, in
black the remaining SNVs. d: Validation of the SNP rs7121 (GNAS) by Sanger sequencing with human-specific primers
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the VAF was based (Fig. 4b): they were fewer after filtering
with Xenome compared to XenofilteR in almost all cases.
This suggests that Xenome might filter too stringently,
which results in multiple SNPs and SNVs in the patient
tumor to receive a VAF estimate below the true value.
In addition to the three PDX breast samples, we tested

ten melanoma PDX samples for which targeted sequen-
cing (using a 360-cancer gene panel) was performed
[14]. We again calculated the VAF and indicated known
SNPs (Fig. 5c and Additional file 4: Figure S1). Since only
PDX were sequenced, no estimate exists for true somatic
or germline mutations. Strikingly, and similar to the breast
cancer analysis, the VAF of multiple SNVs and SNPs were
lower after filtering with Xenome, compared to Xenofil-
teR. Again, this suggests that XenofilteR filters are more
sensitive, which contributes to its performance.
To further validate these findings, we selected two

SNPs with discordant VAFs between XenofilteR and
Xenome after filtering. We developed human-specific
primers to perform Sanger sequencing on both SNPs.
SNP rs7121, located in the gene GNAS, harbored a C > T
change, in M041.X1and M046.X1, but not in M043R.X1,
in concordance with the WES data. Also, the expected
VAF of 50% was observed in the Sanger sequencing in
M046.X1 and the VAF of ~ 25% was reflected in the lower
peak for T in M041.X1 (Fig. 5d). SNP rs2071313, located
in the gene MEN1, showed a G > T change in M041.X1
and M046.X1. Sanger sequencing revealed the SNP in
M041.X1 as heterogeneous corresponding to the VAF after
filtering with XenofilteR (Additional file 5: Figure S2A). In
addition to the lower VAF, the number of sequence reads
was much lower after filtering with Xenome, indicative of
XenofilteR better representing the real VAF (Additional
file 5: Figure S2B). Altogether, we conclude that XenofilteR
outperforms Xenome for the analysis of mutation data of
mixed human/mouse origin as illustrated by both in silico
mixed data and subsequent corroboration in PDX samples
from breast cancer and melanoma patients.

XenofilteR allows for filtering of RNA sequencing data
The effect of mouse sequence reads on downstream ana-
lysis of PDX samples is not limited to DNA sequencing
but affects RNA sequencing also. The method used by
XenofilteR, for which classification is based on the edit
distance of a read, can also be applied to RNA sequen-
cing data, as the same values to calculate the edit dis-
tance are available in the BAM files (CIGAR and the tag
NM). To validate whether indeed, filtering of RNA se-
quence PDX data can be accurately done, we applied
XenofilteR on a set of seven PDX samples for which
matched patient samples were available [14].
The effect of XenofilteR on the read counts in RNA

sequence data was tested using two different samples,
one with a high percentage of mouse cells (M005.X1,

pathologist estimate was 25% of mouse cells) and one
with a low percentage of mouse cells (M019.X1, 1%
mouse cells). As expected, the largest difference between
filtered and unfiltered read count was observed for sam-
ple M005.X1 (Fig. 6a).
Next, we compared the top differentially changed genes

(FDR < 0.001) between filtered and unfiltered samples and
generated a heat map and cluster analysis including the
original patient samples (Fig. 6b). As expected, samples
with the highest percentage of mouse cells also showed
the highest expression of the selected genes. Most import-
antly, after filtering with XenofilteR the expression of the
selected genes better reflected the expression of the genes
in the patient samples.
We also tested XenofilteR on a large data set of 95

melanoma PDX RNA profiles. Although XenofilteR was
initially developed to remove infiltrating mouse reads
from PDX samples, we investigated whether the we could
also use the method to select for mouse reads. For this pur-
pose, XenofilteR was run on this large PDX cohort to re-
move the reads of human origin, leaving the mouse reads.
As expected, considerable variation was observed with
regards to the number of sequence reads classified as
mouse, with a range from 408,145 to 20,725,475 sequence
reads, with on average 6.1% of the total sequence reads
classified as mouse (range: 1–35%). Cluster analysis based
on the mouse read counts of the top 250 most variable
genes showed separation in three clusters with clear expres-
sion patterns in specific samples for clusters 1 and 2 (Fig.
6c). Gene Ontology (GO) analysis of cluster 1 (blue)
showed that this cluster was highly enriched for genes in-
volved in fat cells and metabolic processes, suggesting the
presence of mouse fat cells in this sample (Fig. 6c). We per-
formed the same analysis for the genes in cluster 2 (orange)
and found clear enrichment for genes related to muscle
cells (Fig. 6c). Both cell types likely represent the predomin-
ant components of the murine microenvironment associ-
ated with subcutaneous tumor xenografts. Indeed,
pathological examination of the H&E stainings confirmed
that both fat and muscle cells are abundantly present in
these samples (Fig. 6e). We concluded from these data that
XenofilteR can be applied to RNA sequencing data as well.
Furthermore, we show that gene expression profiles can be
generated of exclusively the murine compartment in PDX
samples, despite the fact that murine sequence reads repre-
sented only a minor fraction of the total number of se-
quenced reads. Furthermore, based on the murine-specific
gene expression profiles, we can identify the predominant
cell types surrounding or infiltrating the PDX in the host.

Discussion
High similarity between mouse and human genetics
complicates the downstream analysis of both RNA and
DNA profiles from tumor xenografts, including PDX
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Fig. 6 XenofilteR on RNAseq data. a. Scatter plots showing the number of RNA sequence reads before and after filtering for mouse sequence
reads with XenofilteR both for a sample with a high percentage of mouse stromal cells (M005.X1) and a sample with a low percentage of mouse
stromal cells (M029.X1). b. Cluster analysis of PDX samples before and after XenofilteR with matched patient samples. c. Heat map of the top 250
most variable mouse genes retrieved from a dataset of 95 PDX samples. Bar graph below the heat map shows the number of mouse sequence
reads. d. Gene Ontology (GO) analysis of the top 2 clusters from c. e. H&E staining of a PDX sample with adjacent mouse fat cells (left) and a PDX
sample with mouse muscle cells (right)
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models. The key problem is that a substantial percentage
of sequence reads of mouse origin can be mapped with
high quality to the human reference genome. These mur-
ine sequence reads map to conserved regions between
mouse and human DNA, mainly exonic regions of the hu-
man genome, many of which correspond to cancer-related
genes, e.g. PTEN and BCL9. Mutation analysis on PDX
WES data revealed thousands of identified SNVs that were
false positives, because they arose from mouse sequence
reads. Importantly, we show that enrichment steps with
human-specific baits also enrich for mouse DNA, likely
due to the high DNA sequence similarity between mouse
and human in the coding region of the genome, consistent
with previous analyses [27–29].
Our in-depth analyses of sequence data from PDX

samples demonstrate that the edit distance (the number
of base pairs in a given mapped read discording with the
reference genome) of a sequence read can distinguish
the origin of the sequence reads. Sequence reads, aligned
to a reference genome by most standard tools, provide
the metrics to calculate the edit distance. On the basis of
this premise, we developed XenofilteR, a method to
classify sequence reads based on edit distances of se-
quence reads (Additional file 6: Figure S3). Because the
edit distance can be calculated from mapped sequence
files from the most frequently used sequence mappers,
XenofilteR is a highly versatile method that can easily be
implemented in current sequence analysis pipelines.
Mapping of the sequence data can be done with the
trusted and validated mapper of choice (e.g. BWA [23]
or Tophat2 [24]), since XenofilteR requires only a
CIGAR string and NM-tag, standard values present in
the BAM-format [31]. XenofilteR has been implemented
in the open-source programming language R. The
R-package provides access to the method for investiga-
tors without programming knowledge by easy installa-
tion [26], extensive documentation and example data. In
addition, we provide a Perl implementation to facilitate
alternative integration for more advanced programmers
of the XenofilteR algorithm in existing pipelines. We
have used an earlier version of this algorithm already for
the analysis of PDX models by targeted sequencing, both
WES and a small cancer gene panel, and it proved to be
an important tool for the identification of mutations
causing resistance to targeted therapy [14, 15].
The validation results of XenofilteR using in silico

mixed samples and PDX samples revealed accurate fil-
tering, allowing for reliable VAF and accurate mutation
calling. For example, all mutations detected in patient
sample M032 (n = 419) were also detected after mixing
of the sample with mouse reads and subsequent filtering
with XenofilteR. XenofilteR appeared to filter more sensi-
tively in multiple genomic regions than the Xenome algo-
rithm, identifying more mutations with a more accurate

VAF. Compared to Bamcmp, XenofilteR filters more thor-
ough, thereby removing more sequence reads of mouse
origin without losing somatic mutations. Although no real
mutations were missed in the in silico validation, 15
false-positive mutations were identified after filtering with
XenofilteR. Interestingly, most of the sequence reads
underlying the false positive SNVs and erroneously classi-
fied as ‘human’ were not mapped to the mouse reference
genome, despite being of mouse origin. The importance of
a good reference genome is also reflected by the in silico
admixed WGS sample where classification of the mouse
strain C57BL/6NJ yielded fewer mouse reads after filtering
compared to the BALB/cJ strain, this because the refer-
ence genome is based on the C57BL/6NJ. This exemplifies
the importance of good and accurate reference genomes
for any filtering to work and suggests a reference genome
based on the mouse host will yield the best results.
In addition to removing mouse reads from PDX data, we

demonstrate here the feasibility of analyzing the mouse
stromal environment associated with (PDX) human tumor
xenografts. We show that expression profiles typical for
two major mouse cell types (fat cells and muscle cells) can
be recovered from the PDX RNA sequence data when iso-
lating for the mouse sequence reads. The high variability in
the number of mouse-derived sequence reads per sample
will pose a challenge when comparing the gene expression
between samples. However, the possibility to analyze mouse
gene expression in tumor xenografts will likely help under-
stand interactions between tumor cells and stromal cells.

Conclusions
In conclusion, we present here the XenofilteR algorithm
as a solution for the problem of intermingled murine host
and human cells in tumor xenografts. XenofilteR can be
applied to both DNA and RNA sequencing and uses the
edit distance, providing a straightforward and fast imple-
mentation that outperforms currently available methods.

Methods
PDX samples
The collection and use of human tissue was approved by
the Medical Ethical Review Board of the Antoni van
Leeuwenhoek. Animal experiments were approved by the
animal experimental committee of the institute and
performed according to Dutch law. PDX tumor fragments
of ~ 5 mm3 were used for subcutaneous transplantation
into NOD.Cg-Prkdcscid Il2rgtm1Wjl/ SzJ (NSG) mice,
which was performed under anesthesia. Before reaching
the maximum allowed tumor size, mice were sacrificed,
tumors were removed, and tumor pieces were (1) fixed in
formalin and embedded in paraffin; (2) snap-frozen and
stored at − 80 C for further analyses; (3) cryopreserved in
10% fetal calf serum (FCS) in DMSO and stored at − 80 C
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for additional passages; or (4) re-transplanted into a new
set of NSG mice [14].

Next generation sequencing
PDX tumor material was extracted as previously de-
scribed [14]. Briefly, melanoma PDX samples from 6
patients and 6 matched blood samples were analyzed
with WES [14]; 10 melanoma PDX samples were ana-
lyzed with targeted sequencing [14]; 6 melanoma PDX
samples and matching patient tumor samples were ana-
lyzed with RNAseq13 and 3 breast cancer PDX samples
with matching blood normal as well as matching patient
tumor were also analyzed with WES [14].
Whole exome sequencing (WES) was performed as

described in Kemper et al. [14]. Exome enrichment
was performed using the Agilent SureSelect Human
Exon Kit 50 Mb capture set (Agilent, G3362). Paired-end
75 reads of targeted-enrichment libraries were sequenced
on the HiSeq 2000. Reads were mapped to the Ensembl
human reference (hg19) by bwa 0–7.5 with default set-
tings [23]. BAM files were processed using Picard [1.101]
(http://picard.sourceforge.net), SAMtools [0.1.18 and
0.1.19] [31] and the Genome Analysis ToolKit (GATK)
release 2.7–4. The sequencing data has been made avail-
able through the European Genome-phenome Archive
(EGA; http://www.ebi.ac.uk/ega/home; accession num-
ber EGAS00001000415 and EGAD00001000869). WES
of mouse DNA, enriched using a human enrichment
kit (SureSelect Human Exon Kit 50 Mb capture set,
Agilent, G3362) was sequenced as described. The se-
quencing data has been made available through the
European Genome-phenome Archive (ENA; http://
www.ebi.ac.uk/ega/home; accession number PRJEB23702).

Merged mouse with human sequence data
For validation of XenofilteR and comparison of Xenofil-
teR with other tools we generated WGS and WES files
with artificially mixed mouse and human reads.
WGS data was generated by merging data from

WGS from mouse (BALB_cJ And C57 downloaded
from: www.sanger.ac.uk/resources/mouse/genomes/) [27, 28]
andWGS from the 1000Genomes project (NA12878, source:
www.internationalgenome.org/data-portal/) [29]. Paired-end
sequencing with 100 bp was available for mouse WGS
as well as for human WGS. To ensure all reads were
mappable, only mapped read pairs were extracted from
bam files and converted to fastq using Picard SamTo-
Fastq. Read pairs containing adapters or uncertain base
calls (N) in either read were filtered.
Using these filtered reads, we generated single-end and

paired-end fastq files with 50 bp, 80 bp or 100 bp reads.
Mouse and human reads were randomly chosen and mixed
in 6 different ratios with 100%, 94%, 88%, 75%, 50% and 0%
human reads. All fastq files contained 70 Million reads (SE)

or read pairs (PE). The resulting 72 sets were mapped in
parallel to GRCh38 and mm10 before analysis with Xeno-
filteR, or directly provided to the Xenome pipeline.
The identical strategy was used for the WES data

using sequence reads of melanoma tumor (M032) [14]
sequence reads from mouse DNA, enriched with a
human enrichment kit, in a 4:1 human/mouse ratio.

RNA sequencing
Three sets of RNA sequencing data were used: 3 mouse
strains (NOD/ShiLtJ, BALB/cJ, C57BL/6NJ) [27, 28], 7
PDX samples for which matched PDX samples were
available [14], and 95 PDX samples without matched pa-
tient samples. The mouse strains downloaded from The
PDX samples with matched patient samples were proc-
essed as previously described [14].
For the second set, all 95 PDX samples were uniquely

barcoded and pooled into a single stranded library and se-
quenced. An average of 56 million unique read pairs were
sequenced per sample in a range between 33 and 78 million.
All samples were mapped with Tophat2 v2.1.0 with the fol-
lowing parameters: --library-type fr-firststrand -g 1 -p 8 -G
ENSEMBL_Annotation_v82.gtf. All samples were mapped
to human reference GRCh38 (ENSEMBL v82) and mouse
reference genome GRCm38 (ENSEMBL v82). The resulting
alignments to human and mouse references were provided
to XenofilteR (version 1.4, with default settings), to select
for reads of mouse origin. Bam files were name sorted with
picard tools followed by counting reads with HTseq-count
(HTSeq-0.6.1p1) with settings: -m intersection-nonempty -a
10 -i gene_id -s reverse -f bam. Count data generated with
HTseq-count was analyzed with DESeq2 [32].

Mutation calling
Variants were called by GATK 2.7–4 using the ‘Unified-
Genotyper’ with default settings, except for “-minIndel-
Frac”, which was set to 10%. Annotation of the vcf files was
performed with annovar (http://annovar.openbioinforma-
tics.org). All variants detected in the germ-line (blood) sam-
ples with a Variant Allele Frequency (VAF) over 2% were
excluded from further analysis. Variants were further fil-
tered: minimum VAF of 0.1 in at least one of the samples; a
minimum of 20× coverage in at least one of the samples;
variant positions, listed as a single nucleotide polymorph-
ism (SNP) in the 1000 Genome project, were excluded,
except when also present in COSMIC [33]; Variant position
were kept only if annotated as exonic by RefSeq (Release
45) and only if the change was non-synonymous.

XenofilteR
All data shown in this paper were analyzed with XenofilteR
version 1.4 as available through Github, http://github.com/
PeeperLab/XenofilteR/releases/tree/V1.4. All samples de-
scribed here were processed with the default settings.
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Xenome
Xenome version 1.0 [19] was downloaded from the
following website: https://github.com/data61/gossamer
and run using default settings. Fastq output files were
altered to comply with bwa and allow mapping; by
prepending an ‘@’ to each read name and a ‘+’ to
each separator line.

‘Strict filtering’
Filtering of xenograft samples using the ‘strict’ filter-
ing method, removal of each read that maps to the
mouse reference, was performed using a custom ver-
sion of Xenofilter based on version V1.4: https://
github.com/PeeperLab/XenofilteR/tree/Strict_filtering.
Identical to the normal XenofilteR version, classifica-
tion of reads was based on primary alignments only
identified by the read name. For paired-end sequen-
cing if either the forward of reverse reads mapped to
the mouse reference genome, the read pair was classi-
fied as ‘mouse’.

BBsplit
BBsplit is available in the BBmap software (Version
38.12) and was downloaded from: https://sourcefor-
ge.net/projects/bbmap/ [22]. BBSplit was run using
default settings.

IHC and sanger sequencing
PDX pieces were fixed in formalin and embedded in
paraffin. Slides were stained by our in-house Animal
Pathology Facility for H&E as previously described [14].
Sanger sequencing to confirm the SNPs was per-

formed as follows: the region of interest was ampli-
fied by conventional PCR, which then was sequenced
by the forward primer or a specific sequencing pri-
mer. The following human specific primers were
used:
MEN1-F (rs7121): TCCCTCACCTGTCCCTCAAA;
MEN1-R (rs7121): CTGATCTGTGCCTCCCTTC;
GNAS-F (rs2071313): GTTCCCTGACCGCTTTGCTA;
GNAS-R (rs2071313): CACAAGTCGGGGTGTAGCTT.

Availability and requirements
Project name: XenofilteR.
Project home page: https://github.com/PeeperLab/

XenofilteR
Operating system(s): Platform independent
Programming language: R
Other requirements: -
License: GNU General Public License v3.0
Any restrictions to use by non-academics: see Licence.

Additional files

Additional file 1: Table S1. WGS of mouse strains mapped to human.
Number of sequence reads from 3 mouse strains mapped to human
genes (Tab. 1) and exons (Tab. 2). (XLSX 11940 kb)

Additional file 2: Table S2. Pathology estimate and SNVs of eight PDX
samples. Percentage of mouse stromal cells, detected SNV and overlap
with mouse derived SNVs of eight melanoma PDX samples. (XLSX 35 kb)

Additional file 3: Table S3. Number of sequence reads after filtering of
the in silico dataset. Number and percentages of mouse and human
reads left after filtering with strict filtering, bamcmp, BBsplit, Xenome and
XenofilteR for all read lengths, paired and single end sequencing and
percentages tested. (XLSX 36 kb)

Additional file 4: Figure S1. Performance of XenofilteR and Xenome
on PDX samples. Mutation calling and read counts for each SNV on
exome sequence data of a breast cancer PDX sample T250 (A) and T283
(B). The variant allele frequency (VAF) was plotted after filtering with
XenofilteR (x-axis) and Xenome (y-axis). Plotted in black are mutations
also detected in the patient sample, in green known SNPs and in red
SNVs detected in the PDX only. C: Mutation calling on targeted
sequencing of melanoma samples. In green all known SNPs are
indicated, in black the remaining SNVs. (TIF 3452 kb)

Additional file 5: Figure S2. Validation of mutation calling after filtering
with Xenofilter and Xenome. A: IGV image of SNP rs2071313, located in
the gene MEN1, of sample M041.X1 and M046.X1 after filtering with
Xenome and XenofilteR. B: Validation of the SNP rs2071313 (MEN1) by
Sanger sequencing with human-specific primers. (TIF 3324 kb)

Additional file 6: Figure S3. Graphical abstract of Xenograft sequence
analysis with XenofilteR. Sequence data obtained from xenograft samples
contains sequence reads from mouse as well as sequence reads from
human origin. XenofilteR separates these reads allowing further
downstream analysis based on sequence reads of human origin only.
(TIF 3293 kb)
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FPKM: Fragments per kilobase of exon per million reads mapped;
PDX: patient derived xenograft; SNP: single nucleotide polymorphism;
SNV: single nucleotide variant; WES: whole exome sequencing; WGS: whole
genome sequencing
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