29 research outputs found

    Intravenous glutamine decreases lung and distal organ injury in an experimental model of abdominal sepsis

    Get PDF
    Introduction The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi. Methods Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively). Results CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours. Conclusions In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.Centres of Excellence Program (PRONEX-FAPERJ)Brazilian Council for Scientific and Technological Development (CNPq)Carlos Chagas FilhoRio de Janeiro State Research Supporting Foundation (FAPERJ)Sao Paulo State Research Supporting Foundation (FAPESP

    ER stress in rodent islets of langerhans is concomitant with obesity and β-cell compensation but not with β-cell dysfunction and diabetes

    Get PDF
    Objective: The objective of this study was to determine whether ER stress correlates with β-cell dysfunction in obesity-associated diabetes. Methods: Quantitative RT-PCR and western blot analysis were used to investigate changes in the expression of markers of ER stress, the unfolded protein response (UPR) and β-cell function in islets isolated from (1) non-diabetic Zucker obese (ZO) and obese female Zucker diabetic fatty (fZDF) rats compared with their lean littermates and from (2) high-fat-diet-fed fZDF rats (HF-fZDF), to induce diabetes, compared with age-matched non-diabetic obese fZDF rats. Results: Markers of an adaptive ER stress/UPR and β-cell function are elevated in islets isolated from ZO and fZDF rats compared with their lean littermates. In islets isolated from HF-fZDF rats, there was no significant change in the expression of markers of ER stress compared with age matched, obese, non-diabetic fZDF rats. Conclusions: These results provide evidence that obesity-induced activation of the UPR is an adaptive response for increasing the ER folding capacity to meet the increased demand for insulin. As ER stress is not exacerbated in high-fat-diet-induced diabetes, we suggest that failure of the islet to mount an effective adaptive UPR in response to an additional increase in insulin demand, rather than chronic ER stress, may ultimately lead to β-cell failure and hence diabetes

    Production and structural characterization of surfactin (C-14/Leu(7)) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The production of biosurfactant by Bacillus subtilis LSFM-05 was carried out using raw glycerol, obtained from a vegetable oil biodiesel plant in Brazil, as the sole carbon source. Production of the biosurfactant was carried out in a 15-L bench-top fermentor and the surfactant was obtained from the foam produced. The crude surfactant was purified by silica gel column chromatography with a yield of 230 mg of the purified biosurfactant per liter of foam. TLC, IR spectroscopy. H-1 and C-13 NMR and Fourier transform ion cyclotron resonance mass spectrometry with electrospray ionization (ESI-FTMS) were used to characterize the purified surfactant. The isolated surfactant was identified as a surfactin lipopeptide. MS/MS data identified the amino acid sequence as GluOMe-Leu-Leu-Asp-Val-Leu-Leu and showed that the fatty acid moiety contained 14 carbons in iso, anteiso or normal configurations. The critical micelle concentration of the C-14/Leu(7) surfactin was 70 mu M, with emulsification efficiency after 24h (E-24) of 67.6% against crude oil. Raw glycerol represents an abundant and renewable carbon source and provides an opportunity for reducing the cost of biosurfactant production and may add value to biodiesel production by creating new commercial applications for this by-product. (C) 2011 Elsevier Ltd. All rights reserved.461019511957Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: Effect of catalase overexpression

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1 alpha transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500 mu M) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with beta-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1 alpha transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Ala and upregulated the levels of phosphaylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and beta-oxidation of fatty acids. (C) 2013 Elsevier B.V. All rights reserved.18321015911604Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore