17 research outputs found

    A common beta-sheet architecture underlies in vitro and in vivo beta(2)-microglobulin amyloid fibrils

    Get PDF
    Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded β2-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical β-sheet architecture. The same β-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of β2-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein

    Sustainable Harvesting of Tropical Rainforests: Reply to Keto, Scott and Olsen

    Get PDF
    This paper refutes the Keto et al. proposition that the Queensland selection logging system is neither ecologically nor economically sustainable. The key requirements of this system are: (1) that logging guidelines are sympathetic to the silvicultural characteristics of the forest, ensuring adequate regeneration of commercial species and discouraging invasion by weeds; (2) tree-marking by trained staff specifies trees to be retained, trees to be removed and the direction of felling to ensure minimal damage to the residual stand; (3) logging equipment is appropriate and driven by trained operators to ensure minimal damage and soil disturbance, compaction and erosion; (4) prescriptions ensure that adequate stream buffers and steep slopes are excluded from logging; (5) sufficient areas for scientific reference, feature protection and recreation are identified and excluded from logging; and (6) that deficiencies in an evolving system are recognized and remedied, leading to an improved system. Many studies of the effects of logging in these forests have been published and collectively provide a unique demonstration of one possible approach to sustainable timber harvesting

    Structural and functional aspects of the pentraxins and SAA in the*acute-phase response and amyloidosis

    No full text
    SAA - serum amyloid A proteinSIGLEAvailable from British Library Document Supply Centre-DSC:DXN006717 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Sopping up SAP

    No full text
    corecore