Journal of Environmental Management (1991) 33, 379-394

Sustainable Harvesting of Tropical Rainforests: Reply to Keto, Scott and Olsen

J. K. Vanclay, E. J. Rudder, G. Dale and G. A. Blake

Queensland Forest Service, GPO Box 944, Brisbane, Queensland, Australia. Received 20 August 1990

This paper refutes the Keto *et al.* proposition that the Queensland selection logging system is neither ecologically nor economically sustainable. The key requirements of this system are: (1) that logging guidelines are sympathetic to the silvicultural characteristics of the forest, ensuring adequate regeneration of commercial species and discouraging invasion by weeds; (2) tree-marking by trained staff specifies trees to be removed and the direction of felling to ensure minimal damage to the residual stand; (3) logging equipment is appropriate and driven by trained operators to ensure minimal damage and soil disturbance, compaction and erosion; (4) prescriptions ensure that adequate stream buffers and steep slopes are excluded from logging; (5) sufficient areas for scientific reference, feature protection and recognized and remedied, leading to an improved system. Many studies of the effects of logging in these forests have been published and collectively provide a unique demonstration of one possible approach to sustainable timber harvesting.

Keywords: tropical rainforest, sustainability, Queensland, Australia.

1. Introduction

We are all concerned at the rate and extent of tropical deforestation and degradation of forested lands. However, the presentation by Keto *et al. (1990)* may do little to alleviate the problem. There are indications that, with appropriate management, sustainable timber harvesting can be achieved with minimal environmental impact (e.g. Jonkers and Schmidt, *1984;* Dawkins, *1988). To* try to convince tropical timber producers otherwise is to invite the broadscale conversion of rainforests to other land uses! A more effective way to ensure the conservation of the world's tropical rainforests may be to promote sustainable harvesting of timber and other forest products (Colinvaux, *1989;* Stocker, *1989;* Vanclay, *1991c).* This view is not restricted to foresters and forest services, but is also promoted by some conservation groups (Thompson, *1988).*

Keto *et al.'s (1990)* critique of the Queensland model of sustainable timber production is largely restricted to questioning the validity of the permanent sample plots which form the basis for timber yield estimates. They suggest that the basis of the model is harvesting an amount equivalent to the growth between harvests. Whilst such harvesting may be necessary to ensure sustainability, it is not sufficient. Prediction and harvesting of a sustained yield is only part of a sustainable timber production system. The main requirement of the Queensland sustainable timber production system is that the forest is left in "good" condition, and this requires that:

- 1. Logging guidelines are sympathetic to the silvicultural characteristics of the forest, viz. ensuring retention of vigorous advance growth, harvesting only defective and mature trees, providing for adequate regeneration of commercial species and discouraging invasion by weeds, such as bamboo and climbing vines.
- 2. Treemarking by trained staff specifies trees to be retained, trees to be removed and the direction of felling to ensure minimal damage to growing stock and minimal opening of the canopy.
- 3. Logging equipment is appropriate and driven by trained operators to ensure minimal damage to the residual stand and minimal soil disturbance, compaction and erosion.
- 4. Prescriptions ensure that adequate stream buffers and steep slopes are excluded from logging.
- 5. Sufficient areas for scientific reference, feature protection and recreation are identified and excluded from logging.

6. Deficiencies in an evolving system are recognized and remedied, leading to an improved system.

Provided that these principles are adhered to and the forest is left in good condition, it may not matter if

the sustained yield is exceeded for a short time. In Queensland, it was government policy to stimulate industrial development by exceeding the sustained yield during harvesting of the virgin resource, but it was realized as early as 1949 that the harvest would ultimately need to be reduced. Throughout the period 1948-1978, the allocation was set at 207 000 cubic metres per annum, and was progressively reduced to the estimated sustainable yield of 60 000 m³/annum in 1986. Yet, despite this apparent overcutting, the region was still considered worthy of inclusion on the World Heritage List in 1988. Clearly, this harvest (207 000 m³/annum) could only be maintained for so long because it was the first harvest from virgin stands. This gradual introduction of sustainable harvesting in north Queensland parallels the experience in North America (Clawson and Sedjo, 1983; Parry *et al.*, 1983).

Contrary to Keto *et al.*'s (1990) claims, the second harvest had commenced in north Queensland: 28 941 ha of forest previously logged under "cutter selection" to specified girth limits during 1939-1955 were relogged to the treemarking guidelines prior to the 1988 logging ban and yielded economically viable harvests. Whilst some of this harvest came from species previously considered less desirable, or from areas simply missed or passed over during the first harvest (logging under cutter selection was typically very selective and restricted to easily accessible areas), some of the harvested volume may be attributed to actual growth on trees which were too small at the time of first harvest.

Simple arithmetic demonstrates the feasibility of the sustained yield. A yield of 60 000 m³/annum from 160 000 ha (Preston and Vanclay, 1988) implies an average annual increment of only $0.375 \text{ m}^3/\text{ha/annum}$, which is a reasonably conservative estimate. Assuming a 40-year nominal rotation implies that 4000 ha would be logged annually, and that the average yield per hectare would be 15 m³/ha. This is a realizable volume consistent with volumes attained in recent recut areas. However, some recut areas have realized much higher yields (e.g. Beatrice Logging Area averaged 40 m³/ha).

2. Permanent sample plots

The main thrust of Keto *et al.'s* (1990) paper was a criticism of the permanent sample plots maintained by the Queensland Forest Service (QFS) in north Queensland. Whilst it is easy to be critical, it is appropriate to bear in mind that some of these plots were established as early as 1948, before the advent of computers and simulation systems, during an era when there was little doubt that the rainforests should be exploited. It is not easy to foresee, at plot establishment, all the possible uses to which plot data may be put, and their exact measurement requirements. Indeed, Whitmore (1989) records that he had to abandon one of his projects in the Solomon Islands because the plots he established in 1964 did not record sufficient detail. In this light, the QFS database of 247 plots (see Appendix 1) has shown stability and versatility. Most plots have been measured every 5 years (sometimes more frequently) for up to 40 years, with only one change in measurement procedure (in 1981 the minimum size for inclusion was changed from 6 m height to 10 cm diameter). All trees have been individually numbered and tagged so that the development of each individual tree could be reliably traced. Whilst this is essentially simple, it involves a huge amount of data, a considerable budget and dedication and diligence by field and office staff.

Keto *et al.* (1990) conveyed the impression that yield estimates for Queensland's rainforests were derived by estimating average plot volume growth and extrapolating this increment to the whole forest estate. Were this the case, it would be necessary to ensure that plots were typical and representative. In fact, a more sophisticated and flexible methodology has been used, and was described in three of the references quoted by Keto *et al. (i.e.* Vanclay, 1983; Preston and Vanclay, 1988; Poore, 1989). This approach employed these permanent sample plots only to develop a growth model, a computer simulation system which predicts growth and change in the rainforest under a wide variety of conditions (e.g. Vanclay 1989a). The present state of the forest is determined from a large number (319 in Preston and Vanclay's study, 518 in more recent unpublished studies) of temporary inventory plots, and yields are determined by repeatedly simulating the growth and harvesting of each of these inventory plots (Vanclay and Preston, 1989). With this growth modelling approach, it is important to sample the widest possible range of stand conditions (Box, 1966; Vanclay, 1991a), not merely the "typical" stands.

Contrary to the claims of Keto *et al.* (1990), records of treatment history and intensity are available for all permanent sample plots (except for the 1929 treatments). Treatment was not "often repeated and of unknown intensity", but applied once, twice and in few instances on three occasions (see Appendix 1). These treated plots were not used in the development of Vanclay's (1989a) growth model or in Preston and Vanclay's (1988) yield calculation. These data have subsequently been used in a revised growth model (Vanclay, 1991b), but do not detract from the utility of that model as it contains an expression to account

for the effects of treatment. Whilst it may be surprising to many readers that so many plots were subjected to treatment and/or underplanting, it should be recognized that, at plot establishment, there was no doubt that the rainforests were to be exploited, and the great research question was how commercial timber production could be increased in a cost-effective way (Henry, 1960).

Rarely has regeneration been unsuccessful in these rainforests. On the contrary, regeneration has been so abundant that it provoked a whole series of thinning trials to identify optimal spacings (see Appendix 1). However, underplanting and enrichment planting have been less successful. Red cedar *(Toona australis)* underplantings have been successful only on State Forest 191 from plantings in 1914, and in Experiment 166 from plantings during the 1950s. Hoop pine *(Araucaria cunninghamii)* showed promise as an underplant only with regular weed control to eliminate competition. *Flindersia* species have also shown little promise (Keys, 1979). Planted trees have been so identified in the data, and statistical analyses revealed no significant difference in growth rate (compared to natural regeneration) once trees had attained 10 cm diameter. Although enrichment planting on permanent sample plots may alter species composition of these plots, it can have no influence on yield estimates, as individual species are identified on the permanent sample plots, in the growth simulation model, and in the inventory plots used in calculations (Vanclay and Preston, 1989).

Whilst prism plots sample only arboreal vegetation and thus provide limited utility for detailed ecological studies, there is no reason to doubt their efficacy in providing growth data of forest trees (Myers and Beers, 1968). The method is highly efficient in estimating variables such as stand basal area and volumes, and is the most efficient way to enumerate tree frequencies by diameter class in tropical forests (Schreuder *et al.*, 1987). The eight prism plots in question were initially established to investigate the effects of logging on the residual stand, and have fulfilled that purpose adequately (Vanclay, 1989b). Keto *et al.* (1990) argue that most of the remaining permanent plots should be discarded because they are less than 0.4 ha. Certainly, it is preferable that plots should have a standard size (ideally 0.4-0.5 ha), but smaller plots are in no way invalid, and still contribute useful growth information. Larger plots may be impractical, as "it is difficult to find many sites in the region larger than 0.5 ha which do not include major physical or floristic discontinuities" (West *et al.* 1988).

Keto *et al.* (1990) contend that several of the unlogged plots are not representative of virgin rainforest, but represent successional communities dominated by secondary species (e.g. *Acacia aulacocarpa*). However, *A. aulacocarpa* has never been recorded on Plot 626/2 (prior to 1981 all stems exceeding 6 m height were measured, but since 1981 only stems exceeding 10 cm diameter have been measured), although it is abundant on roadsides in the vicinity of the plot. Similarly, no *A. aulacocarpa* has ever been recorded on the virgin plot at Mt Windsor (679/2). This plot contains several trees over a metre in diameter, and the largest trees exceed 135 cm. Large trees in this plot include *Cardwellia sublimis, Ceratopetalum succirubrum, Flindersia pimenteliana, Planchonella papyracea* and *Syzygium wesa*, which are fairly typical of these granite soils.

Keto *et al.* (1990) rejected several plots because they had no large commercial stems. However, one characteristic of Culpa Lands (south of Koombooloomba) where some of these plots are located, is the absence of large trees. Thus these plots may well be typical of a considerable area. Not all rainforest has big trees!

Many of the plots were originally half-acre (0.2023 ha) plots measuring two chains by two and a half chains (c. 40 x 50 m) or one chain by five chains (c. 20 x 100 m). Thus, the great majority of plots are 40 m or less in width. Keto *et al.* (1990) reject as "too small (0. 12-0-15 ha) and/or too narrow (10-20 m)" several plots (e.g. 608/1, 610/1, 623/1) which are exactly the same size and dimensions as the two plots (612/1, 613/1) accepted by Keto *et al.* as "usable".

Keto *et al.* (1990) also rejected many plots which "were reduced in effective area by roads, snig tracks, creeks and impeded drainage" or by granite boulders and landslips. Large granite boulders, landslips and cyclones are all natural phenomena in north Queensland, as in most tropical moist forests, and should be represented in an unbiased sample. Similarly, snig tracks, creeks and areas of impeded drainage are common phenomena and should be included in samples. Any system of permanent plots which failed to sample these phenomena could be accused of subjective bias. No permanent sample plots include permanent roads, although some may have been traversed by temporary logging extraction tracks. In any case, data collected prior to disturbance (landslip, cyclone, inundation) is not lost, and continues to provide suitable predisturbance baseline data.

Keto et al. (1990) reject several plots which have fewer than 16 years of measurement, claiming that these are of "dubious statistical validity". Whilst such short measurement histories will not enable the

detection of subtle long-term trends, they still provide good growth data, and there is no reason to doubt their statistical validity simply because of their relatively short history. In contrast, some biometricians argue that there are statistical gains to be attained by measuring plots for a few years only, before abandoning these and establishing new plots elsewhere (e.g. Tennent, 1988).

Keto *et al.* (1990) conclude their criticism of plots with a quote from Vanclay (1983, p. 161) which suggested that available data were often inadequate for detailed growth modelling studies. However, that quote is out of context. Vanclay was not referring to the rainforests of north Queensland, nor to the then Queensland Department of Forestry, but commenting on the difficulties generally facing modellers of indigenous forests everywhere. At that time (1983), Vanclay had no first-hand knowledge of the data from north Queensland.

We make no claim that the QFS has a perfect database for all timber yield and ecological studies, but few resource managers are lucky enough to have complete and perfect information. The art of land use planning and resource management is to make the best possible use of incomplete and imperfect information. The QFS database is deficient in increment data for *Backhousia bancroftii*, a major commercial species, and the database used to construct the revised growth model (Vanclay and Preston, 1989; Vanclay, 1991b) employed data from the CSIRO EP series of plots (West *et al.*, 1988) to overcome this deficiency. We hope that additional plots will be established to extend the present database further. There should be no stigma in admitting a weakness in a database or management system; the very process of improvement requires that deficiencies are recognized and remedied.

3. Ecological sustainability

The effect of disturbance on rainforest structure, species diversity and species richness is controversial, and research findings are very much subject to sample size and degree of disturbance. Whilst Keto *et al.* (1990) suggest that several overseas studies support their contention that repeated logging will lead to a reduction in species diversity and richness, they omit any reference to alternative views and discussions in the literature [e.g. Whitmore's (1984) response to Denslow (1980), and Nicholson *et al.'s* (1990) reply to Saxon (1990)]. Boyce (1988) and Brunig (1988) argue that selection logging actually increases diversity. Crome *et al.* (1990) found no loss of species as a result of logging. In north Queensland, the rare marsupial *Antechinus godmani* has a restricted distribution, but is abundant in an area logged twice and traversed by two major roads. Wyatt-Smith (1988) concluded that "The polycyclic selection logging system of management as currently practiced in northern Queensland rain forest cannot in any way be considered to pose a threat to the continued existence of `threatened' species of fauna or flora".

An important component of the Queensland selection logging system is the exclusion of logging from scientific areas, feature protection areas, steep slopes and stream buffers, and the effect of this is to create a mosaic of logged and unlogged forest. In addition, logging does not completely destroy the canopy. Guidelines prescribe that not more than 50% of the canopy should be disturbed, and recent studies indicated that 40 to 60% of the area actually designated for logging could remain completely undisturbed (Applegate, 1989), Crome et al. (1990) found that less than 25% of the canopy was lost as a result of logging. Rainforests may be more resilient than is popularly believed. One small study (King and Chapman 1983) found that 25 years after clearfelling of all merchantable stems in a Ceratopetalum-dominated warm temperate rainforest, all flowering plants, ferns and mosses that were originally present could again be found. In north Queensland, Stocker (1981) found that 82 tree species regenerated within 2 years of felling and burning rainforest. A comprehensive literature review (Horne and Hickey 1991) found that few quantitative studies of the effects of selection logging had been made, but concluded that the environmental impacts may be minor. Baur (1988) concluded that "Whilst more checking and research are necessary, there seem good grounds for believing that the selective logging system, with its mosaic of disturbed and undisturbed patches and with its similarity to the natural processes experienced in the rainforest, represents no threat to the survival of any plant or animal species".

In appraising the impact of logging, it is necessary to specify whether the sample comprises only areas where the canopy was actually removed in logging, or whether it encompasses the adjacent less disturbed area. The former is likely to indicate massive structural changes and a great reduction in diversity and richness. The latter requires a larger sample and is likely to reveal small structural changes and increased diversity and richness. Nicholson *et al.* (1988) also commented on the importance of sample size, and observed that a large sample (2 ha) of logged forest would reveal no loss of species as a result of logging.

The impact of selection logging on these forests has been extensively studied. The effects on fauna

(Crome and Moore, 1989), flora (Nicholson *et al.*, 1988, 1990; Saxon, 1990; Crome *et al.*, in press), hydrology (Gilmour, 1971), soils (Gillman *et al.*, 1985) and timber production (Vanclay and Preston, 1989; Vanclay, 1990) have been studied, and provide no indication that such harvesting is not sustainable.

4. Economic sustainability

The net economic benefit or cost of rainforest logging cannot be estimated by a simple financial examination of QFS revenues and expenditure. Keto *et al.* (1990, table 2) overstate actual QFS expenditure associated with rainforest harvesting by including expenditure on plantation establishment and maintenance. The costs and revenues recorded during the last full year of rainforest logging operations were the only data recorded on a programme basis, and showed a small profit for the rainforest subprogramme.

The rainforest-based forestry and timber industry of north Queensland was an important and economically viable part of the north Queensland economy (ACIL Australia, 1987). Independent studies (Harris, 1987; Cameron McNamara, 1988) identified some 2000 jobs directly or indirectly linked to rainforest logging in north Queensland, whilst value adding by the industry was estimated at \$25 m. per annum (Harris, 1987).

Long-term total economic losses to individuals, industry and Government from the cessation of rainforest logging have been estimated at \$400 m. (Cameron McNamara, 1988, table 1.1). Cameron McNamara (1988) further indicated that lost rainforest exports and imports of replacement products would cost an estimated \$30 m. annually. These costs far outweigh any subsidy provided by the Queensland Government to maintain QFS operations in north Queensland.

5. Conclusion

Keto *et al.* (1990) contend that "future timber supplies can ultimately only come from plantations", but we ask if minimal impact selection logging is not sustainable, how can these more intensive plantations be sustainable? We agree with Keto *et al.* that "protection of remaining forests will be essential", but suggest that production may provide protection for many of these forests (Vanclay, 1991c).

Keto *et al.* (1990) have not fulfilled their stated objective to "examine that model, its deficiencies and the potential for application to developing countries". Rather, they have criticized several specific aspects. The importance of the Queensland example lies in the successful implementation and co-ordination of many components including reliable resource inventory, estimating the sustained yield, determining areas to be logged, planning the required extraction infrastructure, supervising felling and extraction, ensuring adequate erosion controls on completion of logging, and maintaining reliable management records. These practices and principles, which have been developed to satisfy operational requirements in north Queensland, could serve as examples to other tropical countries and have formed the basis for the ITTO guidelines (ITTO, 1990). The recent World Heritage listing of 97% of these tropical rainforests which have been used for timber production for more than a century (and more intensively managed during the past 40 years) is testimony to the standard of management and the success of the Queensland selection logging system.

The data derived from the permanent sample plots in north Queensland can provide no useful information for other tropical countries; they will need their own plots to predict yields and monitor changes. The Queensland permanent sample plots can merely demonstrate a proven methodology for data collection, management and analysis which may be used elsewhere. Queensland foresters are privileged to have over 40 years' experience in the establishment and maintenance, not only of a permanent sample plot system, but of an integrated forest management system.

Keto *et al.* (1990) have not demonstrated the failure of the "north Queensland logging model" to produce a sustainable harvest of timber, and their criticism of permanent sample plots is flawed. Whilst the Queensland selection logging system is not the only means to ensure a sustainable harvest, it remains one of the best demonstrations visible today. Many other examples (Dawkins, 1988) have been lost through changes in land use.

References

- ACIL Australia Pty Ltd (1987). The Forestry and Timber Industry of North Queensland-Impact of Proposed World Heritage Listing. Barton; ACT: A.C.I.L. Australia Pty Ltd.
- Applegate, G. B. (1989). Comparison of Logging Effects on Two Recut Sites in North Queensland Rainforests, Post 1982. Unpublished report. Brisbane: Queensland Department of Forestry.
- Baur, G. N. (1988). *World Heritage Listing: North Queensland Wet Tropics*. Unpublished report. Brisbane: Queensland Department of Forestry.
- Box, G. E. P. (1966). Use and abuse of regression. Technometrics 8, 625-629.
- Boyce, S. G. (1988). *Systematic Culture of Rainforest in Queensland*. Unpublished report. Brisbane: Queensland Department of Forestry.
- Brunig, E. F. (1988). The Effect of Poly-cyclic Selection Logging in the Wet Tropical Rainforests of Northeast Queensland. Unpublished report. Brisbane: Queensland Department of Forestry.
- Cameron McNamara (1988). Socio-economic Study: Wet Tropical Rainforests North Queensland. Brisbane: Cameron McNamara.
- Clawson, M. and Sedjo, R. (1983). History of sustained yield concept and its application to developing countries. In *History of Sustained Yield Forestry: A Symposium* (Steen, H. K., ed.), pp. 3-15. Portland, Oregon: Forest History Society.
- Colinvaux, P. A. (1989). The past and future Amazon. Scientific American 260 (5), 102-108.
- Crome, F. H. J. and Moore, L. A. (1989). Display site constancy of bowerbirds and the effects of logging on Mt. Windsor Tableland, North Queensland. *Emu* **89**, 47-52.
- Crome, F. H. J., Moore, L. A. and Richards, G. C. (1992). A study of logging damage in upland rainforest in north Queensland. *Forest Ecology and Management* 49: 1-29.
- Dawkins, H. C. (1988). The first century of tropical silviculture: Successes forgotten and failures misunderstood. In *The Future of the Tropical Rain Forest* (McDermott, J. M., ed.), pp. 4-8. Proceedings of Conference at Oxford, 27-28 June 1988. Oxford Forestry Institute.
- Denslow, J. S. (1980). Patterns of species diversity during succession under different disturbance regimes. Oecologia 46, 18-21.
- Gillman, G. P., Sinclair, D. F., Knowlton, R. and Keys, M. (1985). The effect on some soil chemical properties of the selective logging of a north Queensland rainforest. *Forest Ecology and Management* 12, 195-214.
- Gilmour, D. A. (1971). The effects of logging on streamflow and sedimentation in a north Queensland rainforest catchment. *Commonwealth Forestry Review* **50**, 38-48.
- Harris, P. (1987). An Analysis of the Socio-economic Impact of the World Heritage Listing of the Rainforests of North Queensland. Melbourne: Forest Industries Campaign Association.
- Henry, N. B. (1960). The effect of silvicultural treatment on the production from native forests. Australian Forestry 24, 30-45.
- Horne, R. and Hickey, J. (1991). Review: Ecological sensitivity of Australian rainforests to selective logging. *Australian Journal of Ecology* 16, 119-129.
- ITTO (1990). ITTO Guidelines for the Sustainable Management of Natural Tropical Forests. ITTO Technical Series 5. Yokohama: International Tropical Timber Organization.
- Jonkers, W. B. J. and Schmidt, P. (1984). Ecology and timber production in tropical rainforest in Surinam. *Interciencia 9*, 290-297.
- Keto, A. I., Scott, K. and Olsen, M. F. (1990). Sustainable harvesting of tropical rainforests: A reassessment. Paper presented at Seminar on Sustainable Development of Tropical Forests held in conjunction with 8th Session of International Tropical Timber Council, 16-23 May 1990, Bali, Indonesia. The same paper was given under the title "Environmental impact of forestry operations and implications for sustainable development" at the UNDP Workshop on Environmental Management and Sustainable Development in the South Pacific, Suva, Fiji, 16-20 April 1990.
- Keys, M. G. (1979). Growth of Hickory Ash as a Plantation Species and as an Underplant in Treated Rainforest at Kuranda, North Queensland. Research Note No. 25. Queensland Department of Forestry.
- King, G. C. and Chapman, W. S. (1983). Floristic composition and structure of a rainforest area 25 yr after logging. *Australian Journal of Ecology* 8, 415-423.
- Myers, C. C. and Beers, T. W. (1968). Point sampling for forest growth estimation. *Journal of Forestry* 66, 927929.

- Nicholson, D. I., Henry, N. B. and Rudder, J. (1988). Stand changes in north Queensland rainforests. *Proceedings of the Ecology Society of Australia* **15**, 61-80.
- Nicholson, D. I., Henry, N. B. and Rudder, J. (1990). Reply: Disturbance regimes in north Queensland rainforests: A re-evaluation of their relationship to species richness and diversity. *Australian Journal of Ecology* 15, 245-246.
- Parry, B. T., Vaux, H. J. and Dennis, N. (1983). Changing conceptions of sustained-yield policy on the national forests. *Journal of Forestry* 81, 150-154.
- Poore, D. (1989). Queensland, Australia: An approach to successful sustainable management. In *No Timber Without Trees. A Study for ITTO* (Poore, D., Burgess, P., Palmer, J., Rietbergen, S. and Synnott, T., eds), pp. 28-39. London: Earthscan Publications Ltd.
- Preston, R. A. and Vanclay, J. K. (1988). Calculation of Timber Yields from North Queensland Rainforests. Technical Paper No. 47. Brisbane: Queensland Department of Forestry.
- Saxon, E. C. (1990). Comment: Disturbance regimes in north Queensland rainforests: A re-evaluation of their relationship to species richness and diversity. *Australian Journal of Ecology* 15, 241-244.
- Schreuder, H. T., Banyard, S. G. and Brink, G. E. (1987). Comparison of three sampling methods in estimating stand parameters for a tropical forest. *Forest Ecology Management* 21, 119-127.
- Stocker, G. C. (1981). Regeneration of a north Queensland rain forest following felling and burning. *Biotropica* 13, 86-92.
- Stocker, G. C. (1989). Alternative tropical rainforest timber harvesting strategies. Discussion paper at UNESCO Research Planning Workshop on Ecological and Economic Sustainability of Tropical Rainforest Management, Paris, 4-6 September 1989.
- Tennent, R. B. (1988). A New Zealand data collection procedure for growth modelling. In *Modelling Trees, Stands and Forests* (Leech, J. W., McMurtrie, R. E., West, P. W., Spencer, R. D. and Spencer, B. M., eds), pp. 112-120. Proceedings of a Workshop in August 1985 at the University of Melbourne. School of Forestry, University of Melbourne, Bulletin No. 5.
- Thomson, K. (1988). The FoE tropical rainforest campaign. In *The Future of the Tropical Rain Forest* (McDermott, J. M., ed.), pp. 58-6 1. Proceedings of Conference at Oxford, 27-28 June 1988. Oxford Forestry Institute.
- Tracey, J. G. and Webb, L. J. (1976). *Key to the Vegetation of the Humid Tropical Region of North Queensland*. Map Series. Atherton, Queensland: Rain Forest Ecology Unit, CSIRO.
- Vanclay, J. K. (1983). Techniques for modelling timber yield from indigenous forests with special reference to Queensland. M.Sc. Thesis, University of Oxford.
- Vanclay, J. K. (1989a). A growth model for north Queensland rainforests. *Forest Ecology and Management* 27, 245-271.
- Vanclay, J. K. (1989b). Modelling selection harvesting in tropical rain forests. *Journal of Tropical Forest Science* 1, 280-294.
- Vanclay, J. K. (1989c). Site productivity assessment in rainforests: an objective approach using indicator
- species. In Proceedings of the Seminar on Growth and Yield in Tropical Mixed/Moist Forests, 20-24 June 1988, Kuala Lumpur (Wan Razali Mohd., Chan, H. T. and Appanah, S., eds), pp. 225-241. Forest Research Institute, Malaysia.
- Vanclay, J. K. (1990). Effects of selection logging on rainforest productivity. *Australian Forestry*. 53, 200-214.
- Vanclay, J. K. (1991a). Review: Data requirements for developing growth models for tropical moist forests. Commonwealth Forestry Review 70, 105-111.
- Vanclay, J. K. (1991b). Aggregating tree species to develop diameter increment equations for tropical rainforests. *Forest Ecology and Management* 42, 143-168.
- Vanclay, J. K. (1991c). Research needs for sustainable forest resources. In *Tropical Rainforest Research in Australia*. (N. Goudberg and M. Bonell, eds), pp. 133-143: Townsville: Institute of Tropical Rainforest Studies, James Cook University.
- Vanclay, J. K. and Preston, R. A. (1989). Sustainable timber harvesting in the rainforests of northern Queensland. In *Forest Planning for People*, pp. 181-191. Proceedings of 13th biennial conference of the Institute of Foresters of Australia, Leura, N.S.W., 18-22 September 1989. Sydney: Institute of Foresters of Australia.
- West, P. W., Stocker, G. C. and Unwin, G. L. (1988). Environmental relationships and floristic and structural change in some unlogged tropical rainforest plots of north Queensland. *Proceedings of the Ecological Society of Australia* 15, 49-60.

Whitmore, T. C. (1984). Gap size and species richness in tropical rain forests. *Biotropica* 16, 239.

Whitmore, T. C. (1989). Guidelines to avoid remeasurement problems in permanent sample plots in tropical rain forests. *Biotropica* 21, 282-283.

Wyatt-Smith, J. (1988). Queensland rain forest: World heritage listing. Unpublished report. Brisbane: Queensland Department of Forestry.

Appendix 1

The following is a list of permanent sample plots in the Queensland Forest Service rainforest database. Geological types are Alluvial (AL), Acid Volcanic (AC), Basic Volcanic (BV), Coarse-grained Granite (CG), Sedimentary and Metamorphic (SM) and Tully fine-grained Granite (TG). Site quality was determined using Vanclay's (1989c) equation 13. Rainforest structural types follow Tracey and Webb (1976). Brief descriptions of the origin of the various plot types are given below. Notes.

1. Paired treatment plots comparing growth with and without silvicultural treatment. 2. Plots monitoring the development of regeneration.

- 3. Experiments monitoring development of enrichment plantings following thinning to various spacings.
- 4. Experiments monitoring development of rainforest following application of different silvicultural treatment prescriptions.
- 5. Experiments monitoring development of enrichment plantings.
- 6. Experiment examining benefits of silvicultural treatment 10 years prior to logging, with a view to getting more regeneration.
- 7. Experiments monitoring effects of retreatment 15 years after initial silvicultural treatment. 8. Treatment of unproductive rainforest attempting to produce a viable timber harvest. 9. Logging damage studies.

10. Plots monitoring development of dense stands of rainforest.

11. Plots monitoring growth and yield in rainforest under routine management. These plots were deliberately located to sample good, average and poor rainforest. 12. CSIRO growth monitoring plots described in West *et al.* (1988).

lo.	No.	Forest	Zone	East	North	Area (ha)	First measure	Last measure	Geol. type	quality	Alt. (m)	Aspect	Slope (deg.)	Rain (mm)	Struct. type	Years logged	Years treated	Ple typ
69	1	185	55	349700	8101050	0.4047	48	59	SM	5.0	670	WSW	5	1320	6	43		1
7	1	185	55	348800	8101300	0.4047	48	57	SM	6.0	670	N	10	1320	6	43		1
7	2	185	55	348860	8101300	0.4047	48	57	SM	7.4	670	N	10	1320	6	43, 52	52	1
8	1	185	55	349690	8100330	0.4047	48	87	BV	7.8	680	NNW	5	1320	6	43		1
8	2	185	55	349690	8100290	0.4047	48	87	SM	2.0	680	NNW	5	1320	6	43, 49	49	1
9	1	185	55	349100	8101300	0.4047	49	57	SM	4.9	670	N	10	1320	6	43	51	1
9	2	185 191	55	349160 340090	8101300	0·4047 0·0405	49 51	57 64	SM BV	5·5 9·0	670 680	Ν	10 0	1320 1400	6	43 27	51 51	1
9 9	1 2	191	55 55	340090	8082800 8082780	0.0403	53	64 64	BV	9·0 9·7	680		0	1400		27	51	2
9	1	191	55	339030	8082560	0.1036	52	70	BV	_	680		ŏ	1400		28	53	2
9	2	191	55	339030	8082560	0.1036	52	70	BV		680	SE	5	1400		28	53	2
9	3	191	55	339030	8082560	0.1012	52	70	BV		680	_	0	1400		28	53	2
9	4	191	55	339030	8082560	0.1012	61	73	BV	_	680		0	1400		28	53	2
9	5	191	55	339030	8082560	0.0838	52	70	BV		680	SE	5	1400		28	53	2
9	6	191	55	341100		0.0979	52	87	BV	-	680		0	1400		28	52	2
9	7	191	55	341190	8082580	0.1024	52	87	BV	_	680	_	0	1400		28	52	2
0	2	310	55	361090		0.1012	52	68	BV	5.6		N	5	2000		30, 68	30, 53	3
1	1	185	55	350120	8099160	0.1578	52	68	SM	5.5	680	N	10	1320	6	39	50	4
1 1	2 3	185 185	55 55	350020 350200	8099130 8099090	0·1348 0·1643	52 52	68 68	SM SM	— 7·6	670 680	W SE	10 10	1320 1320	6	39 39	52 52	4
7	1	185	55	331410		0.1043	52 54	77	CG	7.6 4.6	1080	SE W	5	1650		53, 80	52 53, 57	5
9	1	194	55	339670		0.1000	54	70	BV	3.7	680		0	1400	5b	33	54, 62	5
<u>,</u>	2	191	55	339580		0.1012	54	70	BV	1.4	680	_	Ő	1400	5b	33	54, 62	5
9	3	191	55	339580		0.1012	54	70	BV	5.0	680	_	ŏ	1400	5b	33	54, 62	5
9	4	191	55	339660	8083000	0.1012	54	70	BV	3.0	680		0	1400	5b	33	54, 62	5
9	5	191	55	339650		0.1012	55	70	BV	4.6	680		0	1400	5b	33	54, 58, 62	
9	6	191	55	339610		0.1012	55	70	BV	2.0	680	_	0	1400	5b	33	54, 58, 62	
9	7	191	55	339570		0.1012	55	70	BV	7.6	680	-	0	1400	5b	40	54, 58, 62	
6	1	251	55	347980		0.4047	69	83	BV	7·0	720	W	10	1800		55	56, 57, 62	
6 7	2 1	251 194	55 55	347960 331660	8038060 8086520	0·4047 0·3541	69 54	83 63	BV CG	7·1 4·0	720 1060	W	10 0	1800 1656		55 53	56, 57, 62 54	5
7	2	194	55	331640		0.2023	55	63	CG	7.2	1060	_	Ő	1650		53	54	5
, 4	ĩ	310	55	361450		0.1010	54	68	BV	5.3	670	SSW	5	2000		29, 68	29, 54	3
4	2	310	55	361450		0.1008	54	68	BV	5.0	670	ESE	5	2000		29, 68	29, 54	3
8	1	1229	55	350960	8146940	0.0283	55	62	SM	0.2	440		0		12c	70, 78	55, 62	5
8	2	1229	55	350980	8146940	0.0809	55	76	SM	3.2	440	Ν	5	2090	12c	50, 78	55, 62	5
8	3	1229	55	351060	8146940	0.0348	55	62	SM	3.7	440	_	0	2090	12c	50, 78	55, 62	5
80	1	1229	55	351300	8147000	0.0769	56	78	SM	5.7	440		0	2030	2a	51, 77	56	5
4	1	310	55	357970	8090050	0.4047	55	68	BV	4·7	720	_	0	2030	1b	58	59	1
4	2	310	55	358100		0.4047	55	68	BV	6.2	720		0	2030	16	58	59	1
07	1	194	55	332850	8087000	0.1012	56	68	CG	8.8	1130	N	5	1650	9	68	-	6
2	1	310	55	361180	8086730	0.1036	58	68	BV	6.2	670	NNW	5	2000		28	29	3
22	2	310	55	361130		0.1012	58	68	BV BV	5·8 5·8	670 670	NNW NNW	5 5	2000 2000		28 28	29, 58 29, 58	3
2	3 4	310 310	55 55	361060 361110	8086610 8086680	0·1012 0·1004	58 58	68 68	BV	5·8 5·9	670	NNW	10	2000		28 28	29, 58	3
4	1	310	55	361470	8086320	0.1012	58	68	BV	7.4	670	SW	10	2000		28	29, 50	3
4	2	310	55	361470	8086390	0.1000	58	68	BV	8.0	670	ŚW	10	2000		28	29, 58	3
4	3	310	55	361560	8086360	0.1012	58	68	BV	6.1	670	SW	5	2000		28	29, 58	3
4	4	310	55	361580		0.1012	58	68	BV	5.9	670	SW	5	2000		28	29, 58	3
4	5	310	55	361330	8086390		58	68	BV	6.0	670	NE	5	2000		28	29, 58	3
4	6	310	55	361330	8086440	0.1020	58	68	BV	7.1	670	NE	5	2000		28	29, 53	3
6	1	310	55	358520		0.0777	58	74	BV	5.2	670	NNE	5	1800		57	58	5
1	1	310	55	358600	8090400	0.1267	59 50	75	BV	6.4	720	NE	25	2030	1b	58	59 58	5
2	1	194 194	55	331700	8084050 8089170	0·1117 0·2598	59 59	74 74	AV CG	4·6 3·8	1035 980	N W	25 10	1650 1650	9	58 54	58 56, 59	5
3 5	1 1	194	55 55	332870 349910		0.2398	59 59	74 72	SM	3·8 3·2	980 440	•• —	0	2030	2a	54 58	50, 59 59	5
5 5	2	1229	55	349910		0.2008	59 59	72	SM	3·2 4·2	440		ŏ	2030	2a 2a	58	59	5
5	3	1229	55	349940		0.1941	59	72	SM	2.3	440	_	ŏ	2030	2a 2a	58	59	5
6	ĩ	1229	55	351480		0.2582	59	79	SM	3.4	440		Ő	2030	12c	52	58	5
6	2	1229	55	351480	8146450	0.2145	59	79	SM	4.1	440	_	0	2030	12c	52	58	5
6	3	1229	55	351750	8146450	0.2307	59	79	SM	4.4	440	W	10	2030	12c	52	58	5
6	4	1229	55	351750	8146540	0.1959	59	79	SM	7.1	440	W	10	2030	12c	52	58	5
0	1	1229	55	352220	8145720	0.1214	60	75	SM	4.1	430	ESE	5	2030	2a	49	59, 61, 70	
0	2	1229	55	352300		0.1012	60	75	SM	4·7	430	N	5	2030	12c	49 60	59, 61, 70	
2	1	194	55	331950	8084360	0.1166	61 61	74 74	AV AV	7·6 9·2	1040 1040	W W	15	1650 1650	9 9	60 60	60, 61 60, 61	5
2	2	194 194	55 55	331950 332040	8084460 8084460	0·1166 0·1216	61 61	74 70	AV AV	9.2	1040	w	15 15	1650	9	60 60	60, 61 60, 61	5
2 3	3 1	194 194	55 55	332040	8084460 8089530	0.1216	61	70 74	CG	9.6	1040	w	5	1650	9	57	57, 61	5
3	2	194	55	332750		0.1538	61	74	CG	6.9	1040	ŵ	5	1650	9	57	57, 61	5
3	3	194	55	332750		0.1194	61	70	CG	7.4	1040	ŵ	5	1650	<u>9</u>	57	57, 61	5
0	1	310	55	358300	8090150	0.0911	55	75	BV	4.1	670	ŵ	5	2030	ĺb	55	55, 65	5
1	î	194	55	332200	8084450	0.1012	61	87	AV	9.2	1040	SW	15	1650	16c	60	60	5
7	i	185	55	349950		0.1012	62	67	SM	4.1	730	_	0	1320		43, 51	62	5
1	1	185	55	354030	8105410	0.1012	61	71	SM	5.0	730	NE	10	1650		45, 60	60	5
2	1	1229	55	351060	8145760	0.1012	61	79	SM	7.2	488	WNW	15	2030	2a	56	61, 75	5
4	1	1229	55	349920	8146860	0.0777	63	74	SM	5.4	460	Е	5	2100		48	62	5
~	1	1137	55	400400	8026150	0.1590	63	82	SM	6.6	30		0	4000	2a	60	62, 65	5
9 9	2	1137	55	400450		0.1348	63	82	SM		30	SW	15	4000	2a	60	62, 65	5

0. No. Freest J. Jong States Mate	Expt	Plot	State		UTM Gr	id Ref.													
1 3 10 55 3650 868720 0 70 8 70 70 70 8 70	No.	No.	Forest	Zone	East	North							Aspect						Plot type
7 1 310 55 35110 008440 0012 59 74 BV 72 70 WNW 5 2000 45 65 57 79 5 0 1 163 53 35110 003400 9223 66 71 5 700 NE 5 1200 8 52 66 71 5 700 NE 5 1200 8 52 66 71 70 NE 5 1200 8 52 700 NE 5 1200 8 52 700 NE 5 1200 8 52 700 8 52 77 54 66 7 70 1408 70 </td <td>32</td> <td>1</td> <td>1229</td> <td>55</td> <td>351630</td> <td>8144880</td> <td>0.1012</td> <td>62</td> <td>79</td> <td>SM</td> <td>7.0</td> <td>560</td> <td>W</td> <td>10</td> <td>2080</td> <td></td> <td>57</td> <td>72, 74</td> <td>5</td>	32	1	1229	55	351630	8144880	0.1012	62	79	SM	7.0	560	W	10	2080		57	72, 74	5
0 1 4.88 55 35139 0.04 0.213 0.5 0.60 1.500 1.60 0.5 0.5 0.00 0.0 0.00 <td>33</td> <td></td>	33																		
1 188 55 3539 101400 0274 65 75 SM 780 SE 5 3330 8 0 -5,71 5 0 1 605 55 31510 02400 02400 66 64 TM 30 760 SE 5 3000 8 52 -7 5,648 7 0 3 2229 55 31540 448450 0400 66 44 SM 41 440 SE 5 2000 52,77 54,68 7 0 4 1229 55 315100 146470 0406 66 44 SM 124 440 SE 5 2000 52,77 54,68 7 0 1229 55 315120 146470 0408 66 44 SM 440 SE 5 2000 52,77 54,68 7 1 1229 55 315120	47												WNW	5					
0 1 605 55 35109 8024800 2023 60 84 TG 50 700 NE 5 2000 8 52 44.8 7 0 2 205 55 3120 8000 66 44 NM 44 440 8E 5 2000 52,77 54 7 0 4 229 55 31300 144270 0405 66 44 SM 41 440 SE 5 2000 52,77 54 67 0 7 229 55 31300 144770 0405 66 44 SM 45 440 SE 5 2000 52,77 54,68 7 0 0 229 55 31310 144570 0405 66 44 SM 66 440 SE 5 2000 52,77 54,68 7 0 10 1229 55 <td>50</td> <td></td> <td>SE</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	50												SE	5					
0 1 1/2 5/2 5/3	70															8		05, 71	
0 1 1229 55 33120 8146/20 04405 66 144 SM 46 440 SE 5 2030 52,77 54 7 0 3 1229 53 33130 8146500 04405 66 144 SM 144 440 SE 5 2030 52,77 54 67 0 5 1229 53 313108 8146500 04405 66 84 SM 16 440 SE 5 2030 52,77 54 67 0 7 1229 53 313108 814670 04405 66 84 SM 46 440 SE 5 2030 52,77 54 7 0 10 1229 53 313108 814660 04405 66 84 SM 64 440 SE 5 2030 52,77 54,68 7 11 1229 5	70													-				65, 68	
0 0 2 1229 55 351200 8146910 04405 66 14 SM 41 440 SE 5 2010 52,77 54 67 0 4 1229 55 313100 8146730 04405 66 84 SM 13 440 SE 5 2010 52,77 54,68 7 0 7 1229 53 31240 814670 04405 66 84 SM 45 440 SE 5 2010 52,77 54,68 7 0 7 223 53 31310 814670 04405 66 84 SM 66 84 SM 67 440 SE 5 2030 52,77 54 7 0 14 1229 53 31310 814650 04405 66 84 SM 64 85 2030 52,77 54,68 7 7 53 <td>30</td> <td></td> <td>7</td>	30																		7
0 4 1229 55 351300 814790 04495 66 84 SM 12 440 SEE 5 2010 52,77 54,68 7 0 6 1229 55 35120 814670 04405 66 84 SM 140 SEE 5 2030 52,77 54,68 7 0 9 1229 55 35130 814670 04405 66 84 SM 64 40 SE 5 2030 52,77 54,68 7 0 10 1229 55 35130 8146490 66 84 SM 64 SM 52030 52,77 54,68 7 0 14 1229 55 35130 814620 6440 SM 54 440 SE 5 2030 52,77 54,68 7 15 1229 55 35120 814620 64405 66 84	80					8146910		66	84		4.4	440	SE	5	2030		52, 77	54	
0 5 2129 55 312100 814630 040405 66 84 SM 1.6 440 SE 5 2030 52.77 54.68 7 0 7 1229 55 312100 8146770 04405 66 84 SM 20 84 7 54.68 7 0 10 1229 55 313100 814670 04405 66 84 SM 57 440 7 0 10 1229 55 313100 814650 04405 66 84 SM 57 440 7 0 14 1229 55 313100 814650 04405 66 84 SM 54 440 SE 5 2030 52.77 54.68 7 0 14 1229 55 351200 8146400 04405 66 84 SM 14 440 SE 5 2030 <	80	3						66											
0 0 0 0 0 0 0 0 1229 55 351200 8146770 0.0405 66 84 SM 455 440 SE 5 2030 52,77 54,68 7 0 10 1229 53 351510 814670 0.0405 66 84 SM 26 440 SE 5 2030 52,77 54,68 7 0 11 1229 55 551510 814650 0.0405 66 84 SM 56 440 SE 5 2030 52,77 54,68 7 1 1229 55 5315108 814657 0.0405 66 84 SM 74 440 SE 5 2030 52,77 54,68 7 1 17 1229 55 351308 814671 0.0405 66 84 SM 144 440 SE 5 2030 52,77	30																		
0 7 1229 55 35180 8146770 0.0405 66 84 SM 45 440 SE 5 2030 52,77 54,66 7 0 0 1229 53 351810 8146740 0.0405 66 84 SM 62 2030 52,77 54,66 7 0 10 1229 55 351510 8146670 0.0405 66 84 SM 64 440 SE 5 2030 52,77 54,66 7 0 14 1229 55 351120 8146670 0.0405 66 84 SM 54 440 SE 5 2030 52,77 54,66 7 15 1229 55 351120 814670 0.0405 66 84 SM 44 440 SE 5 2030 52,77 54,66 7 16 17 184 66 84 SM <td>30</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	30													-					
0 8 229 55 351180 8146770 00405 66 84 SM 20 440 SE 5 2030 52,77 54,68 7 10 10 1229 53 3515100 814673 0.0405 66 84 SM 57 440 SE 5 2030 52,77 54,68 7 11 1229 55 3515100 814673 0.0405 66 84 SM 76 440 SE 5 2030 52,77 54,68 7 11 1229 55 351208 814660 0.0405 66 84 SM 74 440 SE 5 2030 52,77 54,68 7 11 1229 55 351208 814670 0.0405 66 84 SM 74 440 SE 5 2030 52,77 54,68 7 11 129 53 351308 <td< td=""><td>30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	30																		
0 0 1229 55 351200 8146740 0.0405 66 84 SM 67 440 SE 5 2030 52,77 54 7 0 11 1229 53 35140 8146670 0.0405 66 84 SM 66 440 SE 5 2030 52,77 54,68 7 0 14 1229 53 5315120 814660 0.0405 66 84 SM 54 440 SE 5 2030 52,77 54,68 7 15 1229 53 5315106 814660 0.0405 66 84 SM 14 440 SE 5 2030 52,77 54,68 7 16 17 1229 53 33150 808570 0.0405 67 84 CG 89 4180 SE 10 1650 56,80 53,67 7 11 12 194 <td>10</td> <td></td>	10																		
0 10 1229 55 351400 8144620 0.0405 66 84 SM 67 440 SE 5 2030 52,77 54 7 10 12 129 53 351130 8144630 0.0405 66 84 SM 56 440 SE 5 2030 52,77 54 67 10 15 1229 55 351200 814660 0.0405 66 84 SM 54 440 SE 5 2030 52,77 54,68 7 10 16 1229 55 351208 814672 0.0405 66 84 SM 440 SE 5 2030 52,77 54,68 7 11 123 94 55 313108 808780 0.0405 67 74 CG 64 1180 SW 10 1650 56,80 31,67 7 12 194 55 <td>30</td> <td></td>	30																		
112 1229 55 531340 814650 0-405 66 84 SM 440 SE 5 2030 52,77 54,68 7 0 14 1229 55 53130 8146420 0-405 66 84 SM 74 440 SE 52 2030 52,77 54,68 7 0 16 1229 55 53130 814640 0-405 66 84 SM 14 440 SE 52 2030 52,77 54,68 7 1 11 12 194 55 333230 805790 0-405 67 84 CG 68 1180 NE 10 1650 56,80 53 7 1 12 194 55 33130 805870 0-405 67 84 CG 69 1180 SW 1650 56,80 53,77 7 1 24 194 55	80																		
0 13 1229 55 351340 814620 0-0405 66 84 SM 74 440 SE 5 2030 52, 77 54, 66 7 0 15 1229 55 351200 814640 0-0405 66 84 SM 54 440 SE 5 2030 52, 77 54, 66 7 0 11 11229 55 35120 814660 0-0405 66 84 SM 14 440 SE 5 2030 52, 77 54, 66 7 1 112 194 55 33330 808370 0-0405 67 84 CG 68 1180 NE 10 1650 56, 80 53, 67 7 1 12 194 55 33130 808570 0-0405 67 84 CG 52 1180 SW 10 1650 56, 80 53, 67 7 12 <	30	11		55	351310	8146690	0.0405	66	84	SM		440		5					
0 14 1229 55 351230 8146620 0-400 56 84 SM 70 440 SE 5 2030 52, 77 54, 68 7 10 16 1229 55 35130 8146640 0-405 66 84 SM 34 440 SE 52 2030 52, 77 54, 68 7 11 1229 55 33130 816470 0-4065 66 84 SM 440 SE 2 2030 52, 77 54, 68 7 1 12 194 55 33330 808570 0-406 67 84 CG 69 180 EE 150 56, 80 53, 67 7 7 7 55 33170 808580 0-406 67 84 CG 60 150 56, 80 53, 67 7 7 7 55 33170 808580 0-406 67 84 CG 62	30																		
b 15 1229 55 351200 814640 0-4005 66 84 SM 54 440 SE 5 2030 52,77 54,68 7 0 17 1229 55 551100 814660 0-4005 66 84 SM 14 440 SE 5 2030 52,77 54,68 7 1 11 194 55 351100 814710 0-4005 66 84 CG 89 1180 SE 1050 56,80 53,77 7 7 7 7 7 120 155 1550 56,80 53,77 7 1 18 194 55 33170 8085870 0-405 67 84 CG 25 1180 SE 1550 56,80 53,77 7 1 24 194 55 33170 8085870 0-405 67 84 CG 25 1180 E	0																		
0 16 1229 55 351200 814670 0405 66 84 SM 4-4 440 SE 5 2030 52, 77 54, 68 7 0 18 1229 55 35110 814670 0405 66 84 SM 4-0 440 SE 5 2030 52, 77 54, 68 7 11 194 55 33230 808790 0405 67 84 CG 68 1180 NE 10 1650 56, 80 53, 67 7 1 11 1944 55 331790 808590 0405 67 84 CG 60 1180 SE 1650 56, 80 53, 67 7 1 22 194 55 331730 808690 0405 67 84 CG - 1180 E 1650 56, 80 53, 67 7 1 26 194 55 33150	0																		
0 17 1229 55 351180 8146710 0405 66 84 SM 1.40 440 SE 5 2030 52,77 54,68 7 1 11 194 55 332130 808570 04005 66 84 CG 6.8 1180 NE 10 1650 56,80 53,77 7 7 1 17 194 55 331290 808520 04005 67 84 CG 6.8 1180 NW 10 1650 56,80 53,67 7 1 24 194 55 331390 808590 04005 67 84 CG 2.5 1180 SW 10 1550 56,80 53,67 7 1 26 194 55 33150 808590 0405 67 84 CG 1180 E 10 1650 56,80 53,67 7 1 26 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
D D	0																		
1 11 194 55 332350 808570 0-4005 66 84 CG 6.8 1180 NE 10 1650 56,80 53,7 7 1 17 944 55 33150 808590 0-4005 67 84 CG 6.8 1180 NE 10 1650 56,80 53,67 7 1 194 55 331709 808590 0-4005 67 84 CG 6.0 1180 SE 5 1650 56,80 53,67 7 1 25 1944 55 331750 808590 0-4005 70 84 CG - 1180 E 10 1650 56,80 53,67 7 1 26 194 55 33150 808590 0-405 71 84 CG 46 1180 E 10 1650 56,80 53,67 7 1 29 194	0																		
1 1	31					8085780												53	7
1 18 194 55 331990 8085870 0+005 67 77 CG 52 1180 SW 10 1650 56 53, 67 7 1 24 194 55 33170 8085870 0+005 67 84 CG 60 1180 SE 5 1650 56, 80 53, 67 7 1 25 194 55 331970 808590 0+005 67 84 CG 2.5 1180 SW 1650 56, 80 53, 67 7 1 26 194 55 33170 808590 0+005 67 84 CG 2.5 1180 E 10 1650 56, 80 53, 7 7 1 28 194 55 33160 808590 0+005 71 84 CG 4.7 1180 E 10 1650 69, 69 4 1 30 194 55	1	12		55	332330	8085790	0.0405	67	84	CG	6.8			10					
	31																		
1 22 194 55 31750 808590 0-0405 67 84 CG 6-0 1180 8E 5 1650 56, 80 33, 67 7 7 125 194 55 33190 808600 0-0405 67 84 CG 2.5 1180 8W 5 10 1650 56, 80 33, 67 7 7 12 6 194 55 331750 808597 0-0405 67 84 CG 2.5 1180 8U 10 1650 56, 80 33, 67 7 12 7 194 55 331650 808597 0-0405 67 84 CG 3-9 1180 E 10 1650 56, 80 33, 67 7 12 7 194 55 33160 808597 0-0405 67 84 CG 4-7 1180 E 10 1650 56, 80 33, 67 7 12 8 194 55 331640 808590 0-0405 67 84 CG 4-7 1180 E 10 1650 56, 80 53, 67 7 12 8 194 55 331640 808590 0-0405 71 84 CG 4-7 1180 E 10 1650 56, 80 53, 67 7 84 1194 55 331640 808590 0-0405 71 84 CG 4-7 1180 E 10 1650 69 4 4 194 55 331640 808590 0-0405 71 84 CG 4-7 1180 E 10 1650 69 4 42 194 55 331600 808690 0-0223 69 75 CG 6-1 1130 S U 10 1650 69 69 4 4 42 194 55 331600 808690 0-0223 69 75 CG 3-7 1130 S U 10 1650 69 69 4 4 44 194 55 331600 808690 0-0223 69 75 CG 3-8 1130 S U 0 1650 69 69 4 4 44 53 331400 808690 0-0223 69 75 CG 3-8 1130 S U 0 1650 69 69 4 4 45 194 55 331600 808690 0-0223 69 75 CG 3-8 1130 S U 0 1650 69 69 4 4 45 194 55 33160 808690 0-0223 69 75 CG 3-8 1130 SU 0 10 1650 69 69 4 4 45 194 55 33160 808690 0-0223 69 75 CG 3-8 1130 SU 0 10 1650 69 69 4 4 45 194 55 33160 808690 0-0223 69 75 CG 3-8 1130 SU 0 10 2500 45,64 68 5 3 75 55 35490 803720 0-0223 69 75 CG 3-8 1130 SU 5 1650 69 69 4 4 41 30 80871 0-0223 69 75 CG 3-9 130 NE 5 1650 69 69 4 4 41 30 80871 0-0223 69 75 CG 3-9 130 NE 5 1650 69 69 4 4 5 33490 803720 0-023 68 73 BV - 820 NE 20 2500 45,64 68 5 5 5459500 803720 0-0233 68 73 BV - 820 NE 20 2500 45,64 68	31																		
	31																		
1 25 194 55 331910 808000 0.0405 67 84 CG -5 1180 E 10 1550 56,80 53,67 7 1 27 194 55 331750 8085920 0.0405 67 84 CG 86 1180 E 10 1550 56,80 53 7 1 28 194 55 331640 8085900 0.0405 71 84 CG 47 1180 E 10 1650 56,80 53,67 7 1 30 194 55 331600 8087040 0.2023 69 75 CG 62 1130 S 10 1650 69 4 8 41 194 55 331400 8087040 0.2023 69 75 CG 37 1130 S 10 1650 69 69 4 8 45 194 55 331400 808720 0.2023 69 75 CG 38 1130 <td< td=""><td>81</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	81																		
1 26 194 55 331730 808970 0.0405 70 84 CG - 1180 E 50 55,80 53 7 1 28 194 55 331650 808970 0.0405 67 84 CG 8-6 1180 E 10 1650 56,80 53 7 1 29 194 55 331640 8089300 0.0405 71 84 CG 4.7 1180 E 10 1650 69 4 8 41 194 55 331600 808760 0.2023 69 75 CG 3.7 1130 S 10 1650 69 4 8 43 194 55 331400 808660 0.2023 69 75 CG 3.8 1130 SU 1650 69 69 4 8 45 194 55 331400 808710 0	81																		
1 28 194 55 331600 808970 0.0405 67 84 CG 8.6 1180 E 10 1650 56, 80 53, 67 7 1 30 194 55 331640 808990 0.0405 71 84 CG 7.2 1180 E 10 1650 56, 80 53, 67 7 8 41 194 55 331600 808960 0.2023 69 75 CG 6.1 1130 SW 10 1650 69 69 4 8 43 194 55 331400 808960 0.2023 69 75 CG 3.7 1130 SW 10 1650 69 69 4 8 44 194 55 331400 808960 0.2023 69 75 CG 4.4 1130 SW 5 1650 69 69 4 4 130 NE 1650 69 69 4 4 30 331500 805380 802280 <t< td=""><td>31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	31																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	31	27	194			8085920	0.0405	67	84	CG	3.9	1180	Е	5	1650		56, 80	53	
	31																		
8 41 194 55 331600 8087040 0-2023 69 75 CG 62 1130 SW 10 1650 69 4 8 43 194 55 331500 8087040 0-2023 69 75 CG 3.7 1130 SW 10 1650 69 69 4 8 44 194 55 331400 8087040 0-2023 69 75 CG 4.4 1130 SW 5 1650 69 69 4 8 45 194 55 331400 8087220 0-2023 69 75 CG 4.4 1130 SW 5 1650 69 69 4 8 47 155 331400 8087220 0-2023 68 73 BV 3.0 820 NE 20 2500 45, 64 68 5 3 756 55 354920 802240 0-2023 68 73 BV 820 NE 20 2500	31																		
8 42 194 55 331600 8086960 0.2023 69 75 CG 6.1 1130 SW 10 1650 69 4 8 44 194 55 331400 8086960 0.2023 69 75 CG 3.8 1130 SW 10 1650 69 69 4 8 45 194 55 331210 8086960 0.2023 69 75 CG 4.4 1130 SW 5 1650 69 69 4 8 47 194 55 331210 8086960 0.2023 68 75 CG 4.7 1130 NE 5 1650 69 69 4 8 48 194 55 33500 802280 0.2023 68 73 BV 4.8 20 2500 45, 64 68 5 3 756 55 35030 802280 <t< td=""><td>81</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53, 67</td><td>7</td></t<>	81																	53, 67	7
8 43 194 55 331500 8087040 0-2023 69 75 CG 3.7 1130 S 10 1650 69 69 4 8 44 194 55 331400 8087040 0-2023 69 75 CG 4.8 1130 SW 5 1650 69 69 4 8 46 194 55 331400 808720 0-2023 69 75 CG 4.4 1130 NE 5 1650 69 69 4 8 48 194 55 331400 8087170 0-2023 68 73 BV -0 820 NE 20 2500 45, 64 68 5 3 756 55 35508 8023200 0-2023 68 73 BV 820 NE 20 2500 45, 64 68 5 3 7 756 55 <td>08</td> <td></td> <td>4</td>	08																		4
8 44 194 55 331400 8086960 0-2023 69 75 CG 3.4 1130 S 10 1650 69 69 4 8 45 194 55 331200 8087040 0-2023 69 75 CG 4.4 1130 SW 5 1650 69 69 4 8 47 194 55 331400 808720 0-2023 69 75 CG 4.7 1130 NE 5 1650 69 69 4 8 48 194 55 351080 8052380 0-2023 68 73 BV 3.0 820 NE 20 2500 45,64 68 5 3 7 55 354970 8052360 0-2023 68 73 BV - 820 NE 20 2500 45,64 68 5 3 7 756 55	08																	60	4
8 45 194 55 331300 8087040 0.2023 69 75 CG 44 1130 SW 5 1650 69 69 4 8 46 194 55 331400 8087220 0.2023 69 75 CG 3.9 1130 NE 5 1650 69 69 4 8 48 194 55 331400 808720 0.2023 68 76 BV 3.0 NE 5 1650 69 69 4 3 1 756 55 355080 80220 0.2023 68 73 BV -2 820 NE 20 2500 45,64 68 5 3 5 756 55 35500 805200 0.2023 68 73 BV -62 820 NE 20 2500 45,64 68 5 3 7 756 55	08																		4
8 46 194 55 331210 8086960 0.2023 69 75 CG 4.8 1130 NW 5 1650 69 69 4 8 47 194 55 331400 8087170 0.2023 69 75 CG 4.7 1130 NE 5 1650 69 69 4 8 48 194 55 354920 80223 68 73 BV 3.0 820 NE 20 2500 45,64 68 5 3 3 756 55 35500 80223 68 73 BV - 820 NE 20 2500 45,64 68 5 3 7 756 55 35500 80223 68 73 BV - 820 NU 200 45,64 68 5 3 7 756 55 355100 802240 -2023	08																		4
8 8 194 55 31500 8087170 0-2023 68 75 CG 47 1130 NE 50 1650 69 69 4 3 1 756 55 355080 8025650 0-2023 68 73 BV 3-0 820 NE 20 2500 45, 64 68 5 3 3 756 55 355030 8052720 0-2023 68 73 BV - 820 NE 20 2500 45, 64 68 5 3 5 756 55 35500 802740 0-2023 68 73 BV - 820 NE 20 2500 45, 64 68 5 3 7 756 55 355100 802730 0-2023 68 73 BV -7 820 SW 10 2500 45, 64 68 5 3 9 756	08	46	194		331210		0.2023	69	75	CG	4 ·8	1130	SW	5	1650		69	69	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08																		4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08																		4
3 3 756 55 35503 8052720 0-2023 68 73 BV 820 NE 20 2500 45, 64 68 5 3 4 756 55 355020 8052800 0-2023 68 73 BV 820 NE 20 2500 45, 64 68 5 3 6 756 55 355020 8052800 0-2023 68 73 BV 820 NE 20 2500 45, 64 68 5 3 7 756 55 355140 8052740 0-2023 68 73 BV 820 SW 10 2500 45, 64 68 5 3 10 756 55 355190 805280 0-2023 68 73 BV 74 820 SW 10 2500 45, 64 68 5 3 12 756 55 355190 805280 0-2023 68 73 BV 482	23																		5
3 4 756 55 354970 8052800 0-2023 68 73 BV 820 NE 20 2500 45, 64 68 5 3 5 756 55 355020 8052800 0-2023 68 73 BV 6-6 820 NE 20 2500 45, 64 68 5 3 7 756 55 355140 8052800 0-2023 68 73 BV 6-2 820 SW 10 2500 45, 64 68 5 3 8 756 55 355140 8052800 0-2023 68 73 BV 5-7 820 SW 10 2500 45, 64 68 5 3 10 756 55 355100 805280 0-2023 68 73 BV 5-2 820 SW 10 2500 45, 64 68 5 3 11 713 55 355070 8052700 0-1012 64 87 SM 72	23																		5
3 5 756 55 35200 802280 0-2023 68 73 BV 8-9 820 NE 20 2500 45, 64 68 5 3 6 756 55 354960 8052920 0-2023 68 73 BV 6- 820 NE 20 2500 45, 64 68 5 3 8 756 55 355140 805280 0-2023 68 73 BV 6-2 820 SW 10 2500 45, 64 68 5 3 9 756 55 355108 805280 0-2023 68 73 BV 7-4 820 SW 10 2500 45, 64 68 5 3 11 756 55 355070 805280 0-2023 68 73 BV 4.8 820 SW 10 2500 45, 64 68 5 1 1 1137 55 401150 805290 0-1012 64 87 SM 7-2 <td< td=""><td>23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td></td<>	23																		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23					8052860	0.2023		73	BV		820	NE		2500				5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23																		5
3 9 756 55 355130 8052950 0.2023 68 73 BV 5.7 820 SW 10 2500 45, 64 68 5 3 10 756 55 355190 8052830 0.2023 68 73 BV 62 820 SW 10 2500 45, 64 68 5 3 12 756 55 355070 8053280 0.2023 68 73 BV 42 820 SW 10 2500 45, 64 68 5 1 1 1137 55 400700 8025700 0.1012 64 87 SM 6.9 30 N 5 4000 2a 50 56, 64 1 1 2 1137 55 401000 808650 0.2023 70 83 BV 6.5 670 W 10 2000 30, 69 29, 70 3 4 2 310 55 361150 8086630 0.2023 70 83 BV	23																		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23																		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3																		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3																		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3																		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1137						87	SM	7.2		-		4000		50		1
4 2 310 55 361160 8086630 0.2023 70 83 BV 5.8 670 SE 10 2000 30, 69 29, 70 3 4 3 310 55 361150 8086830 0.2023 70 83 BV 5.9 670 W 10 2000 30, 69 29, 70 3 4 4 310 55 361150 8086670 0.2023 70 83 BV 6.5 670 W 10 2000 30, 69 29, 70 3 4 5 310 55 361270 8086670 0.2023 70 83 BV 6.6 670 W 10 2000 30, 69 29, 70 3 4 7 310 55 361410 8086650 0.2023 70 83 BV 6.6 670 N 10 2000 30, 69 29, 70 3 4 9 310 55 361410 8086550 0.2023 70 83 BV <	1													-		2a			1
4 3 310 55 361150 8086830 0.2023 70 83 BV 5.9 670 W 10 2000 30, 69 29, 70 3 4 4 310 55 361150 80868920 0.2023 70 83 BV 6.5 670 W 10 2000 30, 69 29, 70 3 4 4 510 55 361270 8086673 0.2023 70 83 BV 6.6 670 W 10 2000 30, 69 29, 70 3 4 6 310 55 361410 8086630 0.2023 70 83 BV 6.6 670 N 10 2000 30, 69 29, 70 3 4 8 310 55 361410 8086550 0.2023 70 83 BV 6.6 670 S 10 2000 30, 69 29, 70 3 4 9 310 55 36150 808650 0.2023 70 83 BV <td< td=""><td>34</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	34																		
4 4 310 55 361150 8086920 0.2023 70 83 BV 6.5 670 W 10 2000 30, 69 29, 70 3 4 5 310 55 361270 8086670 0.2023 70 83 BV 6.61 670 W 10 2000 30, 69 29, 70 3 4 6 310 55 36130 8086670 0.2023 70 83 BV 6.2 670 W 10 2000 30, 69 29, 70 3 4 7 310 55 361410 8086550 0.2023 70 83 BV 6.5 670 S 10 2000 30, 69 29, 70 3 4 8 310 55 36150 8086550 0.2023 70 83 BV 5.8 670 S 10 2000 30, 69 29, 70 3 4 10 310 55 361630 8086590 0.2023 70 83 BV <t< td=""><td>14 14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	14 14																		
4 5 310 55 361270 8086670 0.2023 70 83 BV 6.1 670 W 10 2000 30, 69 29, 70 3 4 6 310 55 361360 8086673 0.2023 70 83 BV 6.2 670 W 10 2000 30, 69 29, 70 3 4 7 310 55 361410 8086630 0.2023 70 83 BV 6.2 670 N 10 2000 30, 69 29, 70 3 4 8 310 55 361410 8086550 0.2023 70 83 BV 6.4 670 N 10 2000 30, 69 29, 70 3 4 10 310 55 361500 808650 0.2023 70 83 BV 5.6 670 S 10 2000 30, 69 29, 70 3 4 10 310 55 361630 808650 0.2023 70 83 BV <t< td=""><td>54 34</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	54 34																		
4 6 310 55 361360 8086673 0.2023 70 83 BV 6.2 670 W 10 2000 30, 69 29, 70 3 4 7 310 55 361410 8086630 0.2023 70 83 BV 6.2 670 W 10 2000 30, 69 29, 70 3 4 8 310 55 361410 8086550 0.2023 70 83 BV 9.4 670 N 10 2000 30, 69 29, 70 3 4 9 310 55 36150 8086550 0.2023 70 83 BV 5.6 670 S 10 2000 30, 69 29, 70 3 4 10 310 55 36150 808650 0.2023 70 83 BV 5.6 670 S 10 2000 30, 69 29, 70 3 4 12 310 55 361630 808650 0.2023 70 83 BV	34 34																		
4 7 310 55 361410 8086630 0.2023 70 83 BV 6.5 670 S 10 2000 30, 69 29, 70 3 4 8 310 55 361410 8086650 0.2023 70 83 BV 9.4 670 N 10 2000 30, 69 29, 70 3 4 9 310 55 36150 8086550 0.2023 70 83 BV 5.6 670 S 10 2000 30, 69 29, 70 3 4 10 310 55 36150 8086550 0.2023 70 83 BV 6.6 670 S 10 2000 30, 69 29, 70 3 4 11 310 55 361630 8086520 0.2023 70 83 BV 5.6 670 S 20 2000 30, 69 29, 70 3 4 12 310 55 361630 8086520 0.2023 70 83 BV <	4																		
4 9 310 55 361550 8086550 0·2023 70 83 BV 5·8 670 S 10 2000 30, 69 29, 70 3 4 10 310 55 361500 8086550 0·2023 70 83 BV 5·6 670 S 10 2000 30, 69 29, 70 3 4 11 310 55 361630 8086590 0·2023 70 83 BV 5·6 670 S 10 2000 30, 69 29, 70 3 4 12 310 55 361630 8086520 0·2023 70 83 BV 5·2 670 SE 20 2000 30, 69 29, 70 3 0 1 310 55 366130 8086520 0·2023 70 84 BV 1·2 760 NW 5 2000 51, 70 70, 73 5 0 2 310 55 366770 8079850 0·2023 70 84 BV	4	7	310	55	361410	8086630	0.2023	70			6.5				2000		30, 69	29, 70	
4 10 310 55 361500 8086620 0.2023 70 83 BV 6-6 670 S 10 2000 30, 69 29 3 4 11 310 55 361630 8086620 0.2023 70 83 BV 5-6 670 S 20 2000 30, 69 29, 70 3 4 12 310 55 361630 8086520 0.2023 70 83 BV 5-6 670 SE 20 2000 30, 69 29, 70 3 0 1 310 55 36630 8079850 0.2023 70 84 BV 1-2 760 NW 5 2000 51, 70 70, 73 5 0 2 310 55 366735 8079950 0.2023 70 84 BV 1-4 760 NW 5 2000 51, 70 70, 73 5 0 3 310 55 366770 8079850 0.2023 70 84 BV <td< td=""><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4																		
4 11 310 55 361630 8086590 0.2023 70 83 BV 5.6 670 S 20 2000 30, 69 29, 70 3 4 12 310 55 361630 8086520 0.2023 70 83 BV 5.2 670 SE 20 2000 30, 69 29, 70 3 0 1 310 55 361630 8086520 0.2023 70 84 BV 1.2 760 NW 5 2000 51, 70 70, 73 5 0 2 310 55 366735 8079830 0.2023 70 84 BV 1.4 760 NW 5 2000 51, 70 70, 73 5 0 3 310 55 366770 8079830 0.2023 70 84 BV 2.2 760 NW 5 2000 51, 70 70, 73 5 0 3 310 55 366670 8079830 0.2023 70 84 BV	4																		
4 12 310 55 361630 8086520 0-2023 70 83 BV 5-2 670 SE 20 2000 30, 69 29 3 0 1 310 55 366880 8079880 0-2023 70 84 BV 1-2 760 NW 5 2000 51, 70 70, 73 5 0 2 310 55 366735 8079950 0-2023 70 72 BV 1-4 760 NW 5 2000 51, 70 70, 73 5 0 3 310 55 366770 8079830 0-2023 70 84 BV 2-2 760 NW 5 2000 51, 70 70, 73 5 0 3 310 55 366670 8079830 0-2023 70 84 BV 2-2 760 NW 5 2000 51, 70 70, 73 5 0 4 310 55 366670 8079805 0-1214 70 72 BV	14 14																		
0 1 310 55 366880 8079880 0.2023 70 84 BV 1.2 760 NW 5 2000 51, 70 70, 73 5 0 2 310 55 366735 8079950 0.2023 70 72 BV 1.4 760 NW 5 2000 51, 70 70, 73 5 0 3 310 55 366770 80799830 0.2023 70 84 BV 2.2 760 NW 5 2000 51, 70 70, 73 5 0 4 310 55 366770 8079830 0.2023 70 84 BV 2.2 760 NW 5 2000 51, 70 70, 73 5 0 4 310 55 366670 8079855 0.1214 70 72 BV 760 NW 5 2000 51, 70 70, 73 5 0 5 310 55 366760 8079870 0.1214 70 72 BV <t< td=""><td>34 34</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	34 34																		
0 2 310 55 366735 8079950 0.2023 70 72 BV 1.4 760 NW 5 2000 51, 70 70, 73 5 0 3 310 55 366770 8079830 0.2023 70 84 BV 2.2 760 NW 5 2000 51, 70 70, 73 5 0 4 310 55 366690 8079855 0.1214 70 72 BV 760 NW 5 2000 51, 70 70, 73 5 0 4 310 55 366675 8079805 0.1214 70 72 BV 760 NW 5 2000 51, 70 70, 73 5 0 5 310 55 366676 8079805 0.1214 70 72 BV 4.5 760 NW 5 2000 51, 70 70, 73 5 0 6 310 55 366760 8079770 0.1214 70 72 BV	50																		
0 3 310 55 366770 8079830 0-2023 70 84 BV 2-2 760 NW 5 2000 51, 70 70, 73 5 0 4 310 55 366690 8079835 0-1214 70 72 BV - 760 NW 5 2000 51, 70 70, 73 5 0 5 310 55 366670 8079805 0-1214 70 72 BV 4.5 760 NW 5 2000 51, 70 70, 73 5 0 5 310 55 366760 8079700 0-1214 70 72 BV 4.5 760 NW 5 2000 51, 70 70, 73 5 0 6 310 55 366760 807970 0-1214 70 72 BV 5.4 760 NW 5 2000 51, 70 70, 73 5 0 6<	50																		
0 4 310 55 366690 8079855 0·1214 70 72 BV — 760 NW 5 2000 51, 70 70, 73 5 0 5 310 55 366675 8079805 0·1214 70 72 BV 4·5 760 NW 5 2000 51, 70 70, 73 5 0 6 310 55 366760 8079770 0·1214 70 72 BV 5·4 760 NW 5 2000 51, 70 70, 73 5 0 6 310 55 366760 8079770 0·1214 70 72 BV 5·4 760 NW 5 2000 51, 70 70, 73 5	50		310	55	366770	8079830	0.2023	70	84	BV		760	NW		2000		51, 70	70, 73	5
0 6 310 55 366760 8079770 0·1214 70 72 BV 5·4 760 NW 5 2000 51, 70 70, 73 5	50	4		55															
	50																		
ο το	50 50																		
	v	'	510	ور	000000	0017130	0.1714	10	, <u>~</u>	51	1.2	/00	1 4 44	5	2000		51, 70	10, 15	5

Expt	Plot	State		UTM Gri	id Ref.		E	T	C 1	C '4	. 1.		C1	Dein	G	V	V	Dist
No.	No.	Forest	Zone	East	North	Area (ha)	First measure	Last measure	Geol. type	quality	Alt. (m)	Aspect	Slope (deg.)	(mm)	Struct. type	Years logged	Years treated	Plot type
456	2	194	55	331660	8086520	0.1518	69 70	77	CG	8.8	1060		5	1650		54	54 70	5 8
469 469	11 12	607 607	55 55	353550 353560	8126520 8126500	0·1619 0·1619	70 70	82 82	CG CG	4·8 4·6	460 460	S	5 5	1800 1800		59 59	70	8
469	13	607	55	353570		0.1619	70	82	ĊĞ	3.4	460	S	5	1800		59	70	8
469	14	607	55	353540	8126520	0.1619	70	82	CG	5.1		S	5	1800		59	70	8
469	21	607	55	353510	8126510	0.1619	70 70	82	CG	4·9 6·2		W W	5 5	1800 1800		59 59	70 70	8 8
469 469	22 23	607 607	55 55	353530 353510	8126490 8126480	0.1619 0.1619	70 70	82 82	CG CG	6·2	460	w	5	1800		59	70	8
469	24	607	55	353540	8126500		70	82	ĊĞ	9.1	460	Ŵ	5	1800		59	70	8
469	31	607	55	353530	8126530	0.1619	70	82	CG	1.9	460	SW	5	1800		59	70	8
469	32	607	55	353540	8126510		70	82	CG	5.2	460	SW	5	1800		59	70 70	8
469	33 34	607	55 55	353550 353560	8126530 8126510	0.1619	70 70	82 82	CG CG	6·1 6·2	460 460	SW SW	5 5	1800 1800		59 59	70 70	8 8
469 576	1	607 756	55	362000	8038200			82	BV	-	760	sw	10	2500		77	/0	9
577	1	144	55	294450	8198710			86	CG			E	18	1036		77		9
582	1	144	55	292680	8200130			87	CG		1070	S	13	1970	0.10	77		9
591	1	607	55	353600	8115540		52	84	CG BV	8·2	730	SW	15	2200 2030	8/9 1b			10 10
594 594	1 2	310 310	55 55	357900 357900	8089980 8090000	0·0741 0·1437	51 51	83 83	BV	7·0 8·3	720 720	NE NE	5 5	2030	16 1b			10
594	3	310	55	357900	8090020		51	83	BV	7.1	720	NE	5	2030	lb			10
595	1	310	55	361020	8086910	0.3237	51	83	BV	5.9	670	SW	10	2000		29	29	10
598	1	755	55	358550	8073100			85	BV	_	520	SW	5	2540		62		9
606	1	185	55	357120	8098500 8078600	0.1012	50 51	83 87	BV BV	7·5 7·4	720 760	SW N	5 5	1850 2290	1b	16 49	53, 65	11 4
608 608	1 2	310 310	55 55	364300 364300	8078600	0·2023 0·1955	51 53	87 87	вv BV	7·4 6·9	760	E	5	2290	16 16	49, 72	53, 66	4
608	3	310	55	364300	8078600		56	87	BV	6.4		Ē	5	2290		49	56, 66	4
609	1	251	55	343480	8041060	0.1218	51	87	AV	5.6		S	10	1700	9	50	50	4
609	2	251	55	343520	8041040		52	87 87	AV	3.8	770	S	20	1700	9	50 40	52	4
610 610	1 2	1229 1229	55 55	352380 352340	8145710 8145750	0·2023 0·2023	51 52	87 87	SM SM	7·3 5·8	440 440	E E	5 5	2030 2030	12c 12c	49 49	52, 66	4
610	3	1229	55	352340	8145780	0.2023	55	87	SM	6.0	440	NE	5	2030		49	52, 00	4
611	1	VCL	55	376200	8022500	0.2023	51	68	AL	3.4	20	N	5	3800	la	50		4
611	2	VCL	55	376250	8022500		52	68	AL	5.2		N	5	3800	la	50	52, 58	4
611 612	3 1	VCL 268	55 55	375700 409800	8022500 7904700		55 51	68 86	AL CG	6·4 7·3	20 550	N N	5 5	3800 1900	1a 8/6	50 51	55	4
612	2	268	55	409800	7904600	0.2023	52	86	CG	5.1		N	5	1900	0,0	51	52, 66	4
612	3	268	55	409800	7904700		55	86	CG	7.1	550		5	1900		51	55, 73	4
613	1	344	55	367550			51	86	CG	6.8	600		5	1300	2a	47		4
613	2 3	344 344	55 55	367530			52 55	86 86	CG CG	3·3 7·2	600 600		5 5	1300 1300	2a	47 47	52, 66 55, 66	4
613 614	1	1137	55	367580 401650			55 52	80 87	SM	3.8		E	15	4000	2a	50	55, 00	4
614	2	1137	55	401650			52	87	SM	5.0	30	Ε	20	4000		50	52	4
614	3	1137	55	401560			55	87	SM	5.6	30		20	4000		50	55, 66	4
615	1 2	194	55	335650			52 52	85	CG CG	7·7 8·4	1100 1100		20 20	1650 1650			77 52, 66 77 52, 66	4
615 615	3	194 194	55 55	335600 335100			52 52	85 85	CG	8·4 8·4	1100		10	1650	14a	47, 54, 47, 54	11 52, 00	4
615	4	194	55	334700			52	85	ČĞ	7.2	1100		5	1650		47	52, 66	4
615	5	194	55	334600	8079300		52	85	CG	9.1	1100		5	1650		47, 54	52, 66	4
615	6	194	55	334650	8079200		52 52	85	CG	9.8	1100		5	1650	14a	47, 54		4
616 616	1 2	194 194	55 55	332050 332070	8086220 8086280	0·2084 0·2023	52 52	87 87	CG CG	9·2 7·1	1100 1100		5 5	1650 1650	9 9	51, 80 51, 80	52, 66	4
616	3	194	55	332050	8086280	0.2023	52	87	CG	6.8	1100		5	1650	9	51, 80	52, 66	4
617	I	194	55	331850	8086100	0.1012	53	87	CG	7.6	1130	Е	10	1650		51, 80	53	4
617	2	194	55	331800	8086150	0.1012	53	87 87	CG CG	7·7 5·7	1130 1130	E	10 0	1650		51, 80	53, 60	4
617 617	3 4	194 194	55 55	331700 331700	8086150 8086100	0·1016 0·1016	53 53	87 87	CG	3·7 8·3	1130	E	20	1650 1650		51, 80 51, 80	53, 60 53, 60	4
617	5	194	55	331750	8086100	0.1028	53	87	CG	6.6	1130	Е	20	1650		51, 80	53, 60	4
617	6	194	55	331900	8086050	0.1416	53	87	CG	3.9	1130		5	1650	-	51, 80	52, 60, 66	4
618	1	251	55	348080 348060	8038100 8037340		54 56	87 87	BV	9·1 6·2	740	SE	0	1800	5a 5a	52, 67	56	4
618 618	23	251 251	55 55	348060 348080	8037340 8038050	0.2023	56 56	87 87	BV BV	6·2 6·5	760 740	3E —	5 0	1800 1800	5a	52, 67 52, 67	56 56	4
619	1	458	55	375500	7928410	0.3966	54	86	ĊĠ	8·7		NW	5	1500	8	47, 73		4
619	2	458	55	375500	7928350	0.4047	54	66	CG	7.7	600	NW	5	1500	8/6	47	54	4
619	3	458	55	375550	7928350 7928350	0.1619	66 66	86 86	CG	4·9 5-6	600 600	NW NW	5	1500	8/6	47, 73	54, 66	4
619 620	4	458 1229	55 55	375450 351180	7928350 8146840	0·1619 0·4047	66 55	86 87	CG SM	5·6 3·0	600 440	NW E	5 10	1500 2030	12c	47, 73 52, 76	54, 66 55, 76	4
621	1	194	55	332710	8087400	0.2023	68	85	CG	7·4	1100	Ŵ	15	1650	9	64 64	55, 70	4
621	2	194	55	332450	8087360	0.2023	68	85	CG	4 ·7	1100	SE	15	1650	9	64	68	4
622	1	310	55	360500	8091400	0.2023	68	85	BV	6-0	640	NW	5	2030	1b	67	(0	4
622	2	310	55	360620	8091400	0·2023 0·2023	68 68	85 84	BV SM	6·6	640 430	SE NW	10	2030 2030	1b 2a	67 57	68	4
623 623	1 2	1229 1229	55 55	349600 349680	8148520 8148550	0.2023	68 68	84 84	SM	6·1 7·4	430 430	NW	5 5	2030	2a 2a	57 57	68	4
623	3	1229	55	349660	8148580	0.02023	68	84	SM	7.5	430		5	2030	2a	57	68	4
624	1	605	55	· 352200	8025050	0.2023	68	84	TG	5.8	760	NE	20	2000	8	51		11
624 624	2 3	605 605	55	351980	8024650	0.2023	68 68	84 84	TG TG	6∙6 4∙7	760 760	NE SW	5	2000 2000	8	52 51		11 11
624 624	3 4	605 605	55 55	352980 352680	8024550 8024180	0·2023 0·2023	68 68	84 84	TG	4·/ 7·2	760 760	Sw W	15 25	2000	8 8	51		11
624	5	605	55	349850	8024060	0.2023	68	84	ŤĞ	5.8	760	SW	5	2000	8	52, 80		11
625	1	185	55	354400	8106740	0.2023	68	84	CG	9.6	700	w	15	1650	8	52		11

Expt Plot	Plot	State		UTM Grid Ref.			F	• • • •	C 1	0.4	. 1.		61	D '	6	V.	17	DL
No.	No.	Forest	Zone	East	North	Area (ha)	First measure	Last measure	Geol. type	quality	Alt. (m)	Aspect	Slope (deg.)	Rain (mm)		Years logged	Years treated	Plot type
625	2	185	55	350510	8107810	0.2023	69	84	CG	8.8	945	S	25	1650	8/9			11
625	3	185	55	352310	8108900	0.2023	68	84	CG	8.8	1065	SW	25	1650	9	65		11
625	4	185	55	351200	8107360	0.2023	68	84	CG	6.9	7 9 0	E	15	1650	8/9	52		11
625	5	185	55	351150	8106620	0.2023	68	84	CG	7.2	730	SE	20	1650	8	70		11
626	1	1229	55	355500	8143090	0.2023	69	87	SM	5.4	360	SSW	5	2030	2a	54		11
626	2	1229	55	354760	8143540	0.2023	69	87	SM	7·0	360	NE	10	2030	2a			11
640	1	756	55	361100	8052500	PRISM	79	86	BV	_	720	Ν	15	2000		62, 80		9
679	1	144	55	290900	8201600	PRISM	80	85	CG	-	1100	N	5	1036		80		9
679	2	144	55	290600	8201700	PRISM	80	85	CG	-	1060	NE	5	1036				9
701	- 1	756	55	371650	8047300	PRISM	85	88	CG	_	400			2000		87		9
EP	2	185	55	349550	8103510	0.2000	71	87	CG		720	SE	5	1200		43		12
EP	3	607	55	350290	8110090	0.5000	71	87	CG		1120	NE	15	2400				12
EP	4	933	55	337490	8129060	0.2000	72	88	CG	6.4	80	SW	5	2500		59		12
EP	9	185	55	354440	8106960	0.2000	72	88	CG	-	710	E	20	1650		63		12
EP	18	143	55	311100	8169830	0.2000	73	87	CG		1100	W	5	2500				12
EP	19	750	55	368800	7954780	0.2000	75	87	CG	-	620	SE	10	2000				12
EP	29	650	55	345710	8059260	0.2000	75	87	AV		1200	SE	15	2700				12
EP	30	144	55	293260	8199380	0.2000	76	88	CG	—	980	W	5	1500				12
EP	31	755	55	375510	8061530	0.2000	76	88	SM	6.0	80	S	5	4000				12
EP	32	TR 14	54	752330	8479700	0.2000	75	87	SM	2.8	450	SW	5	2000				12
EP	33	452	55	348100	8088250	0.2000	76	88	BV	_	720		0	1400		52		12
EP	34	755	55	369440	8074860	0.2000	76	88	AL		380	SW	5	4000				12
EP	35	TR 55	55	322210	8190920	0.2000	77	87	SM	—	230	SE	10	2900				12
EP	37	679	55	660835	7649387	0.2000	77	87	BV	_	920	SE	5	2400				12
EP	38	194	55	338220	8073460	0.5000	77	87	AV	_	1000	SE	10	1800				12
EP	40	144	55	297320	8198970	0.2000	78	88	CG		800	Ν	10	1300				12
EP	41	NP	55	333200	8215260	0.2000	77	87	AL	-	15	SE	5	3500				12
EP	42	CL	55	745020	8590560	0.2000	77	87	AL	_	30	SE	10	2200				12
EP	43	194	55	333560	8085620	0.2000	78	88	AV	_	1120	S	20	2000				12
ĒΡ	44	194	55	295120	8205880	0.2000	80	88	CG		880	NW	5	2500				12