1,239 research outputs found

    Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy2Ti2O7

    Get PDF
    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent \chi_ac(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca2+ substitution for magnetic Dy3+ is similar to the previous study on nonmagnetic isovalent Y3+ substituted Dy2-xYxTi2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca2+ substitution for Dy3+ ions.Comment: 9 pages, 7 figures, 1 tabl

    Analytical theory for proton correlations in common water ice IhI_h

    Full text link
    We provide a fully analytical microscopic theory for the proton correlations in water ice IhI_h. We compute the full diffuse elastic neutron scattering structure factor, which we find to be in excellent quantitative agreement with Monte Carlo simulations. It is also in remarkable qualitative agreement with experiment, in the absence of any fitting parameters. Our theory thus provides a tractable analytical starting point to account for more delicate features of the proton correlations in water ice. In addition, it directly determines an effective field theory of water ice as a topological phase.Comment: 5 pages, 3 figure

    Scattering and Iron Fluorescence Revealed During Absorption Dips in Circinus X-1

    Get PDF
    We show that dramatic spectral evolution associated with dips occurring near phase zero in RXTE observations of Cir X-1 is well-fit by variable and at times heavy absorption (N_H > 10^24 cm^-2) of a bright component, plus an underlying faint component which is not attenuated by the variable column and whose flux is ~10% of that of the unabsorbed bright component. A prominent Fe emission line at ~6.5 keV is evident during the dips. The absolute line flux outside the dips is similar to that during the dips, indicating that the line is associated with the faint component. These results are consistent with a model in which the bright component is radiation received directly from a compact source while the faint component may be attributed to scattered radiation. Our results are also generally consistent with those of Brandt et al., who found that a partial- covering model could explain ASCA spectra of a low-to-high transition in Cir X-1. The relative brightness of the two components in our model requires a column density of ~2*10^23 cm^-2 if the faint component is due to Thomson scattering in material that mostly surrounds the source. We find that illumination of such a scattering cloud by the observed direct component would produce an Fe K-alpha fluorescence flux that is in rough agreement with the flux of the observed emission line. We also conclude that if the scattering medium is not highly ionized, our line of sight to the compact source does not pass through it. Finally, we discuss simple pictures of the absorbers responsible for the dips themselves.Comment: Accepted for publication in The Astrophysical Journal (23 pages, including 11 figures

    Exact two-spinon dynamical correlation function of the Heisenberg model

    Full text link
    We derive the exact contribution of two spinons to the dynamical correlation function of the spin-1/2 Heisenberg model. For this, we use the isotropic limits of the exact form factors that have been recently computed through the quantum affine symmetry of the anisotropic Heisenberg model XXZXXZComment: 9 pages, Latex, 2 corrections of coefficient

    Finite-temperature perturbation theory for quasi-one-dimensional spin-1/2 Heisenberg antiferromagnets

    Full text link
    We develop a finite-temperature perturbation theory for quasi-one-dimensional quantum spin systems, in the manner suggested by H.J. Schulz (1996) and use this formalism to study their dynamical response. The corrections to the random-phase approximation formula for the dynamical magnetic susceptibility obtained with this method involve multi-point correlation functions of the one-dimensional theory on which the random-phase approximation expansion is built. This ``anisotropic'' perturbation theory takes the form of a systematic high-temperature expansion. This formalism is first applied to the estimation of the N\'eel temperature of S=1/2 cubic lattice Heisenberg antiferromagnets. It is then applied to the compound Cs2_2CuCl4_4, a frustrated S=1/2 antiferromagnet with a Dzyaloshinskii-Moriya anisotropy. Using the next leading order to the random-phase approximation, we determine the improved values for the critical temperature and incommensurability. Despite the non-universal character of these quantities, the calculated values are different by less than a few percent from the experimental values for both compounds.Comment: 11 pages, 6 figure

    PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4(+) T cell transcriptomal molecular signatures.

    Get PDF
    Protective efficacy of Bacillus Calmette-Guérin (BCG) may be affected by the methods and routes of vaccine administration. We have studied the safety and immunogenicity of oral (PO) and/or intradermal (ID) administration of BCG in healthy human subjects. No major safety concerns were detected in the 68 healthy adults vaccinated with PO and/or ID BCG. Although both PO and ID BCG could induce systemic Th1 responses capable of IFN-γ production, ID BCG more strongly induced systemic Th1 responses. In contrast, stronger mucosal responses (TB-specific secretory IgA and bronchoalveolar lavage T cells) were induced by PO BCG vaccination. To generate preliminary data comparing the early gene signatures induced by mucosal and systemic BCG vaccination, CD4(+) memory T cells were isolated from subsets of BCG vaccinated subjects pre- (Day 0) and post-vaccination (Days 7 and 56), rested or stimulated with BCG infected dendritic cells, and then studied by Illumina BeadArray transcriptomal analysis. Notably, distinct gene expression profiles were identified both on Day 7 and Day 56 comparing the PO and ID BCG vaccinated groups by GSEA analysis. Future correlation analyses between specific gene expression patterns and distinct mucosal and systemic immune responses induced will be highly informative for TB vaccine development.Mucosal Immunology advance online publication 30 August 2017; doi:10.1038/mi.2017.67

    Children's reasoning about sexual abuse reporting

    Get PDF
    Children's reasoning about sexual abuse reporting was investigated to clarify the possible relationships between such reasoning and children's age and gender. The need for such a study was supported by research suggesting that the prevalence of childhood sexual abuse significantly exceeds the incidence of reported cases of abuse and that abuse is harmful to the victim. Lawrence Kohlberg's five-stage developmental theory of moral reasoning was applied to children's reasoning about sexual abuse reporting. An interview about the reporting of abuse was developed using Kohlberg's Moral Judgment Interview as a prototype. An equal-sized stratified sample consisting of three age strata (10, 13, and 16 years) and both genders, with 10 children in each age-gender combination, was selected from students enrolled in a county school system in rural North Carolina. These subjects were interviewed, using both Kohlberg's interview and the sexual abuse interview. Children's responses were categorized according to stage of reasoning. Each subject was assigned a categorical global stage score (GSS) and a weighted average score (WAS) for both interviews

    Reflection on modern methods: generalized linear models for prognosis and intervention—theory, practice and implications for machine learning

    Get PDF
    Prediction and causal explanation are fundamentally distinct tasks of data analysis. In health applications, this difference can be understood in terms of the difference between prognosis (prediction) and prevention/treatment (causal explanation). Nevertheless, these two concepts are often conflated in practice. We use the framework of generalized linear models (GLMs) to illustrate that predictive and causal queries require distinct processes for their application and subsequent interpretation of results. In particular, we identify five primary ways in which GLMs for prediction differ from GLMs for causal inference: (i) the covariates that should be considered for inclusion in (and possibly exclusion from) the model; (ii) how a suitable set of covariates to include in the model is determined; (iii) which covariates are ultimately selected and what functional form (i.e. parameterization) they take; (iv) how the model is evaluated; and (v) how the model is interpreted. We outline some of the potential consequences of failing to acknowledge and respect these differences, and additionally consider the implications for machine learning (ML) methods. We then conclude with three recommendations that we hope will help ensure that both prediction and causal modelling are used appropriately and to greatest effect in health research
    • …
    corecore