13 research outputs found

    Association of Cholinergic Muscarinic M4 Receptor Gene Polymorphism with Schizophrenia

    Get PDF
    Background: Previous studies have linked muscarinic M4 receptors (CHRM4) to schizophrenia. Specifically, the rs2067482 polymorphism was found to be highly associated with this disease. Purpose: To test whether rs2067482 and rs72910092 are potential risk factors for schizophrenia and/or pharmacogenetic markers for antipsychotic-induced tardive dyskinesia. Patients and Methods: We genotyped DNA of 449 patients with schizophrenia and 134 healthy controls for rs2067482 and rs72910092 polymorphisms of the CHRM4 gene with the use of the MassARRAY® System by Agena Bioscience. Mann–Whitney test was used to compare qualitative traits and χ2 test was used for categorical traits. Results: The frequency of genotypes and alleles of rs72910092 did not differ between patients with schizophrenia and control subjects. We did not reveal any statistical differences for both rs2067482 and rs72910092 between schizophrenia patients with and without tardive dyskinesia. The frequency of the C allele of the polymorphic variant rs2067482 was significantly higher in healthy persons compared to patients with schizophrenia (OR=0.51, 95% CI [0.33–0.80]; p=0.003). Accordingly, the CC genotype was found significantly more often in healthy persons compared to patients with schizophrenia (OR=0.49, 95% CI [0.31–0.80]; p=0.010). Conclusion: Our study found the presence of the minor allele (T) of rs2067482 variant being associated with schizophrenia. We argue that the association of rs2067482 with schizophrenia may be via its regulatory effect on some other gene with protein kinase C and casein Kknase substrate in neurons 3 (PACSIN3) as a possible candidate. Neither rs2067482 nor rs72910092 is associated with tardive dyskinesia

    Erbb2 is required for cardiac atrial electrical activity during development

    No full text
    The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart's electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation

    Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation

    Get PDF
    The endogenous mechanism that determines vertebrate body length is unknown but must involve loss of chordo-neural-hinge (CNH)/axial stem cells and mesoderm progenitors in the tailbud. In early embryos, Fibroblast growth factor (FGF) maintains a cell pool that progressively generates the body and differentiation onset is driven by retinoid repression of FGF signalling. This raises the possibility that FGF maintains key tailbud cell populations and that rising retinoid activity underlies cessation of body axis elongation. Here we show that sudden loss of the mesodermal gene (Brachyury) from CNH and the mesoderm progenitor domain correlates with FGF signalling decline in the late chick tailbud. This is accompanied by expansion of neural gene expression and a similar change in cell fate markers is apparent in the human tailbud. Fate mapping of chick tailbud further revealed that spread of neural gene expression results from continued ingression of CNH-derived cells into the position of the mesoderm progenitor domain. Using gain and loss of function approaches in vitro and in vivo, we then show that attenuation of FGF/Erk signalling mediates this loss of Brachyury upstream of Wnt signalling, while high-level FGF maintains Brachyury and can induce ectopic CNH-like cell foci. We further demonstrate a rise in endogenous retinoid signalling in the tailbud and show that here FGF no longer opposes retinoid synthesis and activity. Furthermore, reduction of retinoid signalling at late stages elevated FGF activity and ectopically maintained mesodermal gene expression, implicating endogenous retinoid signalling in loss of mesoderm identity. Finally, axis termination is concluded by local cell death, which is reduced by blocking retinoid signalling, but involves an FGFR-independent mechanism. We propose that cessation of body elongation involves loss of FGF-dependent mesoderm identity in late stage tailbud and provide evidence that rising endogenous retinoid activity mediates this step and ultimately promotes cell death in chick tailbud
    corecore