11 research outputs found

    Tough Materials Through Ionic Interactions

    Get PDF
    This article introduces butyl acrylate-based materials that are toughened with dynamic crosslinkers. These dynamic crosslinkers are salts where both the anion and cation polymerize. The ion pairs between the polymerized anions and cations form dynamic crosslinks that break and reform under deformation. Chemical crosslinker was used to bring shape stability. The extent of dynamic and chemical crosslinking was related to the mechanical and thermal properties of the materials. Furthermore, the dependence of the material properties on different dynamic crosslinkers-tributyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C4ASA) and trihexyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C6ASA)-was studied. The materials' mechanical and thermal properties were characterized by means of tensile tests, dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. The dynamic crosslinks strengthened the materials considerably. Chemical crosslinks decreased the elasticity of the materials but did not significantly affect their strength. Comparison of the two ionic crosslinkers revealed that changing the crosslinker from C4ASA to C6ASA results in more elastic, but slightly weaker materials. In conclusion, dynamic crosslinks provide substantial enhancement of mechanical properties of the materials. This is a unique approach that is utilizable for a wide variety of polymer materials.Peer reviewe

    Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating

    Get PDF
    Poly(diisopropylaminoethyl methacrylate) (PDPA) is a pH- and thermally responsive water-soluble polymer. This study deepens the understanding of its phase separation behavior upon heating. Phase separation upon heating was investigated in salt solutions of varying pH and ionic strength. The effect of the counterion on the phase transition upon heating is clearly demonstrated for chloride-, phosphate-, and citrate-anions. Phase separation did not occur in pure water. The buffer solutions exhibited similar cloud points, but phase separation occurred in different pH ranges and with different mechanisms. The solution behavior of a block copolymer comprising poly(dimethylaminoethyl methacrylate) (PDMAEMA) and PDPA was investigated. Since the PDMAEMA and PDPA blocks phase separate within different pH- and temperature ranges, the block copolymer forms micelle-like structures at high temperature or pH.Poly(diisopropylaminoethyl methacrylate) (PDPA) is a pH-and thermally responsive water-soluble polymer. This study deepens theunderstanding of its phase separation behavior upon heating. Phase separationupon heating was investigated in salt solutions of varying pH and ionicstrength. The effect of the counterion on the phase transition upon heating isclearly demonstrated for chloride-, phosphate-, and citrate-anions. Phaseseparation did not occur in pure water. The buffer solutions exhibited similarcloud points, but phase separation occurred in different pH ranges and withdifferent mechanisms. The solution behavior of a block copolymer comprisingpoly(dimethylaminoethyl methacrylate) (PDMAEMA) and PDPA wasinvestigated. Since the PDMAEMA and PDPA blocks phase separate withindifferent pH- and temperature ranges, the block copolymer forms micelle-likestructures at high temperature or pHPeer reviewe

    Well-dispersed clay in photopolymerized poly(ionic liquid) matrix

    Get PDF
    This contribution presents a methodology for combining the solvating power of ionic liquids with polymer composite synthesis. A polymerizable ionic liquid was used as solvent to disperse clay, after which the mixture was polymerized into a solid polymer-clay composite. Polymer-clay composites were prepared with filler load-ings up to 10 wt%. The addition of clay as filler enhanced mechanical properties; tensile strength and stiffness of the materials exhibited appreciable improvements. The glass transition temperature of the materials shifted to slightly higher temperatures due to the hindered segmental motions of the polymer chains. The improvements were the highest at approximately 5 wt% filler content. When the filler content was increased further, excessive aggregate formation impaired the material properties.Peer reviewe

    Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions

    Get PDF
    Flexible composite materials were prepared by in situ copolymerization of ionic liquid like monomers-namely 1-vinyl-3- ethyl imidazolium bis(trifluoromethane)sulfonimide (M1) and 1-(2-acryloyloxyundecyl)-3-methylimidazolium bis(trifluoromethane)sulfonimide (M2) that were cross-linked with 1,1 '-octane-1,8-diylbis(3-vinyl imidazolium) di[bis(trifluoromethane)sulfonimide] (CL). Mixtures of polymerizable ionic liquids were used to disperse organo-modified montmorillonite clay as a filler. Polymerization of the mixtures resulted in copolymer composites. The glass transition temperature of the composites could be tuned in the range of -2-127 degrees C by varying the ratio of the ionic liquid monomers M1 and M2, which is presented in the article for the first time along with its homopolymer. The mechanical properties were significantly enhanced by using a copolymer matrix instead of either of the respective homopolymers. The toughest M1-M2 copolymer composite exhibited a toughness of 5.3 +/- 1.4 MPa, while the toughnesses of corresponding poly(M1) and poly(M2) films were 0.6 +/- 0.2 and 0.5 +/- 0.003 MPa, respectively. The composite could be filled uniformly with large amounts of montmorillonite clay. The copolymer matrix was able to take up large amounts of clay while still exhibiting mechanical properties that surpassed the unfilled matrix.Peer reviewe

    Hubble space telescope images of SN 1987A: Evolution of the Ejecta and the Equatorial Ring from 2009 to 2022

    Get PDF
    Supernova (SN) 1987A offers a unique opportunity to study how a spatially resolved SN evolves into a young SN remnant. We present and analyze Hubble Space Telescope (HST) imaging observations of SN 1987A obtained in 2022 and compare them with HST observations from 2009 to 2021. These observations allow us to follow the evolution of the equatorial ring (ER), the rapidly expanding ejecta, and emission from the center over a wide range in wavelength from 2000 to 11,000 Å. The ER has continued to fade since it reached its maximum ∌8200 days after the explosion. In contrast, the ejecta brightened until day ∌11,000 before their emission levelled off; the west side brightened more than the east side, which we attribute to the stronger X-ray emission by the ER on that side. The asymmetric ejecta expand homologously in all filters, which are dominated by various emission lines from hydrogen, calcium, and iron. From this overall similarity, we infer the ejecta are chemically well mixed on large scales. The exception is the diffuse morphology observed in the UV filters dominated by emission from the Mg ii resonance lines that get scattered before escaping. The 2022 observations do not show any sign of the compact object that was inferred from highly ionized emission near the remnant’s center observed with JWST. We determine an upper limit on the flux from a compact central source in the [O iii] HST image. The nondetection of this line indicates that the S and Ar lines observed with JWST originate from the O free inner Si–S–Ar-rich zone and/or that the observed [O iii] flux is strongly affected by dust scattering

    The Pulsar and Nebula in SNR 0540-69.3

    No full text
    Supernova remnants (SNRs) are the end products of supernova (SN) explosions. These explosions happen when certain massive stars face the ends of their evolutionary cycle and create shock waves propagating in the surrounding medium by ejecting part of the star’s material. An SNR is the region defined by these powerful shocks. Due to the nature of SNRs spreading stellar material to their surroundings, they play a major part in the chemical evolution of the universe.  Some SNRs are observed to contain a pulsar (PSR), a spinning neutron star emitting electromagnetic radiation through its magnetic poles, and a pulsar-wind nebula (PWN), where relativistic particles and magnetic fields escaping the pulsar interact with the surroundings. This is the case for SNR 0540-69.3 (SNR0540), the so called twin of one of the most studied astronomical objects in the sky, the Crab Nebula. The attached paper (Paper I) is based on VLT observations of the central regions of SNR 0540 with the instruments MUSE and X-Shooter. The MUSE observations provide a possibility to study the optical spatial variations of SNR 0540 for the first time utilising spectroscopy, and are in general one of the few such studies of PWNe in the optical. On the other hand, earlier works focusing on the shape of the SNR 0540 continuum spectrum in the optical wavelengths have mostly utilised narrow band photometry, which has yielded conflicting results. The X-shooter observations of SNR 0540 providing the first near-infrared (NIR) spectrum with a good coverage in the optical can be used to tackle these problems.  In Paper I, the continuum emission is modelled by power-law models to constrain the underlying conditions in the PSR and PWN in SNR 0540. An important parameter in these models is called the spectral index (α), which determines the slope of the spectrum. We find significant spatial variations in the spectral index that reveal a torus-jet structure around the PSR, confirming earlier results. Surprisingly, we also find that the spectral index decreases (from α ~ 1.7 to α ~ 0.5) toward the outer parts of the PWN and is the largest for the PSR (α1 ~ 1 in the low and α2 ~ 2 in the high frequencies), in contrast to theoretical expectations for the basic scenario of synchrotron cooling. Additionally, two spectral indices seem to be required to characterise both the PSR’s and PWN’s optical(-NIR) spectra.  Future observations in the optical but also in the infrared and X-rays would help understanding the complex conditions in the central regions of SNRs. Most importantly, optical observations of other SNRs would shed light on whether SNR 0540 is a special case. The unexpected spectral index variations in SNR 0540 highlight the need for further theoretical work to better understand the origin of the optical synchrotron emission in PSRs and PWNe. Supernovarester (SNR) Ă€r slutprodukterna av supernovaexplosioner (SN). Dessa explosioner intrĂ€ffar nĂ€r vissa massiva stjĂ€rnor möter Ă€ndarna av sin evolutionĂ€ra cykel och skapar chockvĂ„gor som fortplantar sig i det omgivande mediet genom att stöta ut en del av stjĂ€rnans material. En SNR Ă€r regionen som definieras av dessa kraftfulla stötar. PĂ„ grund av naturen hos SNR som sprider stjĂ€rnmaterial till sin omgivning spelar de en stor roll i universums kemiska utveckling.  Vissa SNR:er har observerats innehĂ„lla en pulsar (PSR), en snurrande neutronstjĂ€rna som sĂ€nder ut elektromagnetisk strĂ„lning genom sina magnetiska poler, och en pulsar-vindnebulosa (PWN), dĂ€r relativistiska partiklar och magnetfĂ€lt som flyr pulsarn interagerar med omgivningen. Detta Ă€r fallet för SNR 0540-69.3 (SNR 0540), den sĂ„ kallade tvillingen till ett av de mest studerade astronomiska objekten pĂ„ himlen, Krabbanebulosan. Bifogade papper (Paper I) Ă€r baserad pĂ„ VLT-observationer av de centrala regionerna i SNR 0540 med instrumenten MUSE och X-Shooter. MUSE-observationerna ger en möjlighet att studera de optiska rumsliga variationerna av SNR 0540 för första gĂ„ngen med hjĂ€lp av spektroskopi, och Ă€r i allmĂ€nhet en av fĂ„ sĂ„dana studier av PWNe i optiken. A andra sidan har tidigare arbeten med fokus pĂ„ formen av SNR 0540-kontinuumspektrumet i de optiska vĂ„glĂ€ngderna mestadels anvĂ€nt smalbandsfotometri, vilket har gett motstridiga resultat. X-shooter-observationerna av SNR 0540 som ger det första nĂ€ra-infraröda (NIR) spektrumet med en bra tĂ€ckning i optiken kan anvĂ€ndas för att ta itu med dessa problem.  I Paper I modelleras synkrotronemissionen av potenslagsmodeller för att begrĂ€nsa de underliggande förhĂ„llandena i PSR och PWN i SNR 0540. En viktig parameter i dessa modeller kallas spektralindex (α), som bestĂ€mmer spektrumets lutning. Vi hittar betydande rumsliga variationer i det spektrala indexet som avslöjar en torus-jet-struktur runt PSR, vilket bekraftar tidigare resultat. Överraskande nog finner vi ocksĂ„ att spektralindexet minskar (frĂ„n α ~ 1.7 till α ~ 0.5) mot de yttre delarna av PWN och Ă€r störst för PSR (α1 ~ 1 i de lĂ„ga och α2 ~ 2 i de höga frekvenserna), i motsats till teoretiska förvĂ€ntningar pĂ„ grundscenariot med synkrotronkylning. Dessutom verkar tvĂ„ spektrala index krĂ€vas för att karakterisera bĂ„de PSR:s och PWN:s optiska(-NIR) spektra.  Framtida observationer inom det optiska, men ocksĂ„ i det infraröda och röntgenstrĂ„lar skulle hjĂ€lpa till att förstĂ„ de komplexa förhĂ„llandena i de centrala regionerna av SNR. Det viktigaste Ă€r att optiska observationer av andra SNR:er skulle belysa om SNR 0540 Ă€r ett specialfall. De ovĂ€ntade spektrala indexvariationerna i SNR 0540 belyser behovet av ytterligare teoretiskt arbete för att bĂ€ttre förstĂ„ ursprunget till den optiska synkrotronemissionen i PSR och PWNe. QC 2023-05-23</p

    The Pulsar and Nebula in SNR 0540-69.3

    No full text
    Supernova remnants (SNRs) are the end products of supernova (SN) explosions. These explosions happen when certain massive stars face the ends of their evolutionary cycle and create shock waves propagating in the surrounding medium by ejecting part of the star’s material. An SNR is the region defined by these powerful shocks. Due to the nature of SNRs spreading stellar material to their surroundings, they play a major part in the chemical evolution of the universe.  Some SNRs are observed to contain a pulsar (PSR), a spinning neutron star emitting electromagnetic radiation through its magnetic poles, and a pulsar-wind nebula (PWN), where relativistic particles and magnetic fields escaping the pulsar interact with the surroundings. This is the case for SNR 0540-69.3 (SNR0540), the so called twin of one of the most studied astronomical objects in the sky, the Crab Nebula. The attached paper (Paper I) is based on VLT observations of the central regions of SNR 0540 with the instruments MUSE and X-Shooter. The MUSE observations provide a possibility to study the optical spatial variations of SNR 0540 for the first time utilising spectroscopy, and are in general one of the few such studies of PWNe in the optical. On the other hand, earlier works focusing on the shape of the SNR 0540 continuum spectrum in the optical wavelengths have mostly utilised narrow band photometry, which has yielded conflicting results. The X-shooter observations of SNR 0540 providing the first near-infrared (NIR) spectrum with a good coverage in the optical can be used to tackle these problems.  In Paper I, the continuum emission is modelled by power-law models to constrain the underlying conditions in the PSR and PWN in SNR 0540. An important parameter in these models is called the spectral index (α), which determines the slope of the spectrum. We find significant spatial variations in the spectral index that reveal a torus-jet structure around the PSR, confirming earlier results. Surprisingly, we also find that the spectral index decreases (from α ~ 1.7 to α ~ 0.5) toward the outer parts of the PWN and is the largest for the PSR (α1 ~ 1 in the low and α2 ~ 2 in the high frequencies), in contrast to theoretical expectations for the basic scenario of synchrotron cooling. Additionally, two spectral indices seem to be required to characterise both the PSR’s and PWN’s optical(-NIR) spectra.  Future observations in the optical but also in the infrared and X-rays would help understanding the complex conditions in the central regions of SNRs. Most importantly, optical observations of other SNRs would shed light on whether SNR 0540 is a special case. The unexpected spectral index variations in SNR 0540 highlight the need for further theoretical work to better understand the origin of the optical synchrotron emission in PSRs and PWNe. Supernovarester (SNR) Ă€r slutprodukterna av supernovaexplosioner (SN). Dessa explosioner intrĂ€ffar nĂ€r vissa massiva stjĂ€rnor möter Ă€ndarna av sin evolutionĂ€ra cykel och skapar chockvĂ„gor som fortplantar sig i det omgivande mediet genom att stöta ut en del av stjĂ€rnans material. En SNR Ă€r regionen som definieras av dessa kraftfulla stötar. PĂ„ grund av naturen hos SNR som sprider stjĂ€rnmaterial till sin omgivning spelar de en stor roll i universums kemiska utveckling.  Vissa SNR:er har observerats innehĂ„lla en pulsar (PSR), en snurrande neutronstjĂ€rna som sĂ€nder ut elektromagnetisk strĂ„lning genom sina magnetiska poler, och en pulsar-vindnebulosa (PWN), dĂ€r relativistiska partiklar och magnetfĂ€lt som flyr pulsarn interagerar med omgivningen. Detta Ă€r fallet för SNR 0540-69.3 (SNR 0540), den sĂ„ kallade tvillingen till ett av de mest studerade astronomiska objekten pĂ„ himlen, Krabbanebulosan. Bifogade papper (Paper I) Ă€r baserad pĂ„ VLT-observationer av de centrala regionerna i SNR 0540 med instrumenten MUSE och X-Shooter. MUSE-observationerna ger en möjlighet att studera de optiska rumsliga variationerna av SNR 0540 för första gĂ„ngen med hjĂ€lp av spektroskopi, och Ă€r i allmĂ€nhet en av fĂ„ sĂ„dana studier av PWNe i optiken. A andra sidan har tidigare arbeten med fokus pĂ„ formen av SNR 0540-kontinuumspektrumet i de optiska vĂ„glĂ€ngderna mestadels anvĂ€nt smalbandsfotometri, vilket har gett motstridiga resultat. X-shooter-observationerna av SNR 0540 som ger det första nĂ€ra-infraröda (NIR) spektrumet med en bra tĂ€ckning i optiken kan anvĂ€ndas för att ta itu med dessa problem.  I Paper I modelleras synkrotronemissionen av potenslagsmodeller för att begrĂ€nsa de underliggande förhĂ„llandena i PSR och PWN i SNR 0540. En viktig parameter i dessa modeller kallas spektralindex (α), som bestĂ€mmer spektrumets lutning. Vi hittar betydande rumsliga variationer i det spektrala indexet som avslöjar en torus-jet-struktur runt PSR, vilket bekraftar tidigare resultat. Överraskande nog finner vi ocksĂ„ att spektralindexet minskar (frĂ„n α ~ 1.7 till α ~ 0.5) mot de yttre delarna av PWN och Ă€r störst för PSR (α1 ~ 1 i de lĂ„ga och α2 ~ 2 i de höga frekvenserna), i motsats till teoretiska förvĂ€ntningar pĂ„ grundscenariot med synkrotronkylning. Dessutom verkar tvĂ„ spektrala index krĂ€vas för att karakterisera bĂ„de PSR:s och PWN:s optiska(-NIR) spektra.  Framtida observationer inom det optiska, men ocksĂ„ i det infraröda och röntgenstrĂ„lar skulle hjĂ€lpa till att förstĂ„ de komplexa förhĂ„llandena i de centrala regionerna av SNR. Det viktigaste Ă€r att optiska observationer av andra SNR:er skulle belysa om SNR 0540 Ă€r ett specialfall. De ovĂ€ntade spektrala indexvariationerna i SNR 0540 belyser behovet av ytterligare teoretiskt arbete för att bĂ€ttre förstĂ„ ursprunget till den optiska synkrotronemissionen i PSR och PWNe. QC 2023-05-23</p

    On explaining the tension in the observations of the Hubble parameter by the wLTB model

    No full text
    TĂ€llĂ€ hetkellĂ€ universumin laajenemisnopeudessa eli Hubblen parametrin arvossa on havaittu noin 3,6 standardipoikkeaman ero paikallisen (etĂ€isyystikapuut) sekĂ€ globaalin (kosminen taustasĂ€teily) mittaustavan vĂ€lillĂ€. TĂ€ssĂ€ pro gradu -tutkielmassa esitetÀÀn kosmologisesta standardimallista poiketen epĂ€homogeeninen wLTB-malli, jonka avulla kyseistĂ€ eroa voidaan selittÀÀ. wLTB-mallissa pystytÀÀn ratkaisemaan Einsteinin kenttĂ€yhtĂ€löt eksaktisti epĂ€homogeenisessa pallosymmetrisessĂ€ tapauksessa, mikĂ€ mahdollistaa paikasta riippuvan Hubblen parametrin arvon mÀÀrittĂ€misen epĂ€homogeenisen alueen, eli LTB-kuplan sisĂ€llĂ€. Osoittautuu, ettĂ€ ympĂ€ristöÀÀn harvempi kupla kasvattaa paikallista Hubblen vakion arvoa ja voi siten selittÀÀ eroa havaintojen vĂ€lillĂ€. Mielivaltainen epĂ€homogenia eikĂ€ mielivaltainen havainnoijan sijainti epĂ€homogenian sisĂ€llĂ€ ole kuitenkaan sallittu. Tulevaisuuden haasteena on sovittaa homogeniaan kohdistuvat rajoitukset yhteen havaitun Hubblen vakion poik- keaman kanssa.A tension of 3.6 standard deviation has been observed between the local (distance ladder) and global (cosmic microwave background) measurements in the expansion rate of the universe i.e. the present-day Hubble parameter value H0. In this Master’s Thesis, depart from the Standard Model of Cosmology, an inhomogeneous cosmological wLTB model is introduced to explain the observed tension. The wLTB model enables one to solve the Einstein’s field equations exactly in an inhomogeneous but spherically symmetric case. This makes it possible to determine the current Hubble parameter value inside an inhomogeneous area called LTB bubble. It turns out that an underdense bubble increases the local Hubble parameter value and thus makes the wLTB model a possible candidate that can explain the Hubble parameter tension. However, arbitrary inhomogeneities as well as observer’s arbitrary locations inside the bubble are not allowed. In the future, the challenge is to fit the restrictions for the inhomogeneity and the Hubble parameter observational data together

    Corrigendum:Tough materials through ionic interactions (Frontiers in Chemistry, (2021), 9, (721656), 10.3389/fchem.2021.721656)

    No full text
    In the published article, there was an error in Figures 11, 12. The order of magnitude was incorrect in Figures 11A, D and Figures 12A, D. The correct figures and their captions appear below. In the published article, there was an error in Supplementary Figure S20, which had incorrect dimensions. The correct figure and its caption appear below. The ion content dependence of (A) Young’s modulus, (B) stress at break, (C) strain at break, and (D) fracture energy (WB) of C4ASA-films with 1% (blue), 2% (black), and 5% (red) BudMA. The fracture energies were defined as the integrals of stress-strain curves. The ion content dependence of (A) the Young’s modulus, (B) the stress at break, (C) the strain at break, and (D) the fracture energy (WB) of films with 2% BudMA and varying concentrations of C4ASA (black) or C6ASA (red). The fracture energies were defined as the integrals of stress-strain curves. The Young’s moduli (A), stresses at break (B), strains at break (C), and fracture energies (D) of films with 5% of C4ASA, C6ASA, or PC6ASA. Each film contains 2% BudMA. The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.</p

    Spatial Variations and Breaks in the Optical-NIR spectra of the Pulsar and PWN in SNR 0540-69.3

    No full text
    The supernova remnant SNR 0540-69.3 offer an excellent opportunity to study the continuum emission from a young pulsar and pulsar-wind nebula (PWN). We study the continuum emission from the pulsar and PWN of SNR 0540-69.3 with the VLT instruments MUSE and X-shooter in the wavelength range 3000–25,000 Å, which provides the possibility to study spatial variations of the optical spectra along with the first near-infrared (NIR) spectrum of SNR 0540-69.3. We model the optical spectra with a power law (PL) FÎœ ∝ Μ−α and find clear spatial variations (including a torus-jet structure) in the spectral index across the PWN, the general trend being a spectral hardening toward the outer parts, from α ~ 1.7 to ~ 0.5. The full optical-NIR spectrum of the PWN is best described by a broken power law with the break frequency at log10 (Îœb) = 14.61 ± 0.04 Hz and spectral indices of α1 = 0.88 ± 0.04 and α2 = 1.27 ± 0.05. These results confirm that several breaks are needed to model the full spectral energy distribution of the PWN. Finally, we subtract the PWN contribution from the pulsar spectrum in MUSE and find that a spectral break at log10 (Îœb) = 14.622 ± 0.002 Hz and spectral indices of α1 = 1.02 ± 0.07 and α2 = 2.010 ± 0.007 describe the pulsar spectrum. QC 20230525</p
    corecore