25 research outputs found

    Altered Excitatory-Inhibitory Balance in the NMDA-Hypofunction Model of Schizophrenia

    Get PDF
    Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDA-receptor subtype in the aetiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation–inhibition (E/I) balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed

    Cell-specific synaptic plasticity induced by network oscillations

    Get PDF
    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave- ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner

    Die funktionelle Bedeutung von Projektionszellen des medialen entorhinalen Cortex in der Interaktion zwischen entorhinalem Cortex und Hippocampus

    Get PDF
    Der entorhinale Cortex (EC) nimmt eine zentrale Stellung im limbischem System ein und ist darüber hinaus eine Verbindungsstelle zwischen Hippocampus und Cortex. Um die Eigenschaften der Projektionszellen im EC genauer zu charakterisieren, führten wir intrazelluläre Ableitungen an den Neuronen der oberflächlichen (Schicht II und III) und der tiefen (Schicht IV-VI) Schichten durch, von denen etwa ein Viertel während der Ableitung mit dem Farbstoff Biozytin gefärbt werden konnten. In Schicht III des medialen EC fanden wir vier unterschiedliche Zelltypen, von denen zwei als Projektionsneurone (Typ 1 und Typ 2) charakterisiert wurden. Die Projektionszellen der Schicht III besitzen eine niedrige Schwelle zur Auslösung synaptisch evozierter Aktionspotentiale. Daneben konnten wir zwei weitere Typen von Zellen (Typ 3 und Typ 4) bestimmen, deren Somata in der Schicht III lagen, die aber nicht in den Hippocampus projizierten, sondern lokal im EC verschaltet waren. In den tiefen Schichten des EC fanden sich zur Area Dentata (AD) projezierende bipolare und multipolare Neurone, die trotz der morphologischen Ähnlichkeit mit GABAergen Interneuronen die typischen elektrophysiologischen und neurochemischen Eigenschaften von Prinzipalzellen des EC besitzen. Diese Neurone können vermutlich Funktionen von sowohl Lokal- als auch Projektionszellen übernehmen und dementsprechend die schnelle Informationsübertragung zwischen den tiefen und oberflächlichen Schichten einerseits und zwischen EC und AD andererseits ausüben. Um der Frage nachzugehen, unter welchen Bedingungen die Schicht II- und III-Projektionszellen aktiviert werden, führten wir repetitive synaptische Reizungen im EC durch. Hochfrequente repetitive synaptische Reizung (> 10 Hz) führt zu einer bevorzugten Aktivierung der Schicht II-Zellen. Hingegen werden die Schicht III-Zellen bei niedrigeren Reizfrequenzen (10 Hz) synaptic activation of the EC was more effective at eliciting action potentials from layer II EC neurons. In contrast, during low frequency

    Cell type-specific separation of subicular principal neurons during network activities.

    Get PDF
    The hippocampal output structure, the subiculum, expresses two major memory relevant network rhythms, sharp wave ripple and gamma frequency oscillations. To this date, it remains unclear how the two distinct types of subicular principal cells, intrinsically bursting and regular spiking neurons, participate in these two network rhythms. Using concomitant local field potential and intracellular recordings in an in vitro mouse model that allows the investigation of both network rhythms, we found a cell type-specific segregation of principal neurons into participating intrinsically bursting and non-participating regular spiking cells. However, if regular spiking cells were kept at a more depolarized level, they did participate in a specific manner, suggesting a potential bimodal working model dependent on the level of excitation. Furthermore, intrinsically bursting and regular spiking cells exhibited divergent intrinsic membrane and synaptic properties in the active network. Thus, our results suggest a cell-type-specific segregation of principal cells into two separate groups during network activities, supporting the idea of two parallel streams of information processing within the subiculum

    Sharp wave and gamma network oscillations within the subiculum.

    No full text
    <p>(A) Spectrogram (top) with color-coded power spectral density (PSD) exemplifies the transition from spontaneously occurring sharp wave-ripples (SWR) to gamma frequency oscillations within the subiculum. The corresponding LFP recordings are displayed below. The application of kainic acid (KA, onset is marked by black line) abolishes the SWR rhythm and induces, after a brief transitory state, a stable oscillatory gamma rhythm. The recording interruptions of the top spectrograms and the underlying LFP traces are 12 s (middle) and 25 min (right). Red lines mark three examples that are illustrated below with higher temporal resolution (SWR, transition, gamma). (A, bottom, left) The SWR (filtered 2–300 Hz), the corresponding SPW (2–50 Hz) and the ripple components (100–300 Hz) supplemented by the color-coded power spectral density wavelet transform. (A, bottom, right) The boxplot depicts the distribution of the wavelet peak power spectral frequencies of 100 analyzed consecutive ripple events of the upper example trace. (B) Sharp waves of both polarities are exemplified on the left with each SWR trace (2–300 Hz, top), the ripple trace (100–300 Hz, middle) and the corresponding wavelet transform as color-coded power spectral density plot (bottom). The boxplot (right) illustrates the distribution of the mean SWP rates of all slices investigated (n = 42).</p
    corecore