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2Neuroscience Research Center, Charité -Universitätsmedizin Berlin, Berlin,
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Abstract Gamma rhythms are known to contribute to the process of memory encoding.

However, little is known about the underlying mechanisms at the molecular, cellular and network

levels. Using local field potential recording in awake behaving mice and concomitant field potential

and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-

dependent modification of hippocampal networks, including alterations in sharp wave-ripple

complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated

synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced

postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast,

alteration of inhibitory synaptic strength is independent of postsynaptic activation and less

pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two

major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus,

we propose that gamma frequency oscillations represent a network state that introduces long-

lasting synaptic plasticity in a cell-specific manner.

DOI: 10.7554/eLife.14912.001

Introduction
Neural oscillations are thought to play an important role in learning and memory processing

(Axmacher et al., 2006; Düzel et al., 2010; Nyhus and Curran, 2010). Learning is based on activ-

ity-dependent modification of synaptic strength in order to incorporate transient experiences into

persistent memory traces (Citri and Malenka, 2008). Gamma-band oscillations and sharp wave-rip-

ple activity (SWR), involved in memory encoding (Jutras and Buffalo, 2010) and consolidation (Buz-

sáki, 1989; Girardeau et al., 2009; Jadhav et al., 2012), respectively, appear to be interlinked in

the course of memory processing. However, to date, it had been unclear whether gamma rhythms

itself represent a network state that can directly promote the formation of long-lasting synaptic plas-

ticity within the cortical network.

The hippocampus is an important structure for memory acquisition, consolidation and spatial ori-

entation (Buzsáki and Moser, 2013; Eichenbaum and Cohen, 2014). Within the hippocampus, the

CA3 area constitutes an autoassociative neural network, in which three pathways converge: mossy

fibers and associational-commissural (A/C) and perforant path (PP) projections. Each of these path-

ways display plasticity (Berzhanskaya et al., 1998; Malenka and Bear, 2004; Nicoll and Schmitz,

2005), which has seen the CA3 area harnessed as a well-suited and popular model for studying

activity-dependent modification of synaptic transmission. However, hippocampal neural plasticity

phenomena have traditionally been studied using tetanus-, pairing- or chemically induced plasticity-

protocols, while the applicability of network oscillations, such as used in our study, as investigative

tool had been unproven to date.
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GABAergic interneurons (INs) have been shown to play a major role in controlling oscillatory activ-

ity, as well as synaptic transmission and plasticity in cortical networks (Ben-Ari, 2006;

Klausberger and Somogyi, 2008). Major inhibitory cell types, parvalbumin- (PV) and cholecystokinin

(CCK)-expressing INs provide distinct forms of inhibition and have complementary roles in cortical cir-

cuits. In fact, PV-expressing INs are assumed to act as “fast signaling devices” (Jonas et al., 2004) and

provide precisely-timed phase-modulated inhibition to control the timing of discharge in individual

neurons as well as the synchronization and emergence of oscillations at the level of the network

(Cobb et al., 1995; Gloveli et al., 2005a; Bartos et al., 2007; Sohal et al., 2009). In contrast, CCK-

expressing INs show a slower but variable discharge pattern and asynchronous GABA release

(Hefft and Jonas, 2005; Daw et al., 2009). High expression of various receptors for neuromodulators

(Freund, 2003; Armstrong and Soltesz, 2012) post- and presynaptically, suggests that these INs may

regulate excitability in the network by mediating inhibition in a behavioral state-dependent manner.

We investigated the interaction and interdependence of two classical hippocampal network pat-

terns, gamma frequency oscillations and SWRs, important in memory encoding and consolidation,

respectively. We found that in vivo theta-nested gamma oscillations have an enhancing effect on sub-

sequent SWRs in awake behaving mice. Analysis of the underlying molecular, cellular and synaptic

mechanisms in vitro slice preparations showed changes in SWR-associated excitatory synaptic strength

between pyramidal cells (PC) that are mediated postsynaptically and depend on metabotropic gluta-

mate receptor-5 (mGluR5) activation. In stark contrast to excitation, alteration of inhibitory synaptic

strength was independent of postsynaptic activation and less pronounced, reflecting an IN-specific,

directionally biased synaptic plasticity, as demonstrated in our study for two major GABAergic inhibi-

tory cell types, PV- and CCK-expressing INs. Our results suggest that gamma frequency oscillations

represent a network state that promotes the formation of long-lasting synaptic plasticity in the hippo-

campal area CA3, leading to modification of synaptic strengths in a cell-specific manner.

eLife digest Changes in the strength of synapses – the connections between neurons – form the

basis of learning and memory. This process, which is known as synaptic plasticity, incorporates

transient experiences into persistent memory traces. However, a single synapse should not be

viewed in isolation. Neurons typically belong to extensive networks made up of large numbers of

cells, which show coordinated patterns of activity. The synchronized firing of the neurons in such a

network is referred to as a network oscillation.

The frequency of an oscillation – that is, the number of times per second that its component cells

are active at the same time – reflects distinct physiological functions. For example, high frequency

oscillations called gamma waves help new memories to form, but it is not clear exactly how they do

this. By studying gamma oscillations in a brain region called the hippocampus, Zarnadze, Bäuerle

et al. provide insights into the underlying mechanisms.

Signals from “excitatory” neurons make the neuron on the other side of the synapse more likely

to fire in response, and signals for “inhibitory” neurons make it less likely to fire. By recording the

activity of excitatory neurons in mouse brain slices, Zarnadze, Bäuerle et al. show that gamma

oscillations increase the strength of excitatory synapses in the hippocampus, allowing neurons to

signal more easily across these connections. Blocking the activity of a protein called metabotropic

glutamate receptor 5 prevents this increase in excitatory synaptic strength, suggesting that these

receptors play an important role in memory processing. In contrast to excitatory neurons, gamma

oscillations have different effects on two types of inhibitory neurons within the hippocampus. The

oscillations increase the excitability of gamma-supporting inhibitory neurons, but at the same time

reduce that of gamma-disturbing inhibitory neurons. These opposing changes in turn support

synaptic plasticity.

By showing that gamma oscillations contribute to changes in synaptic strength within the

hippocampus, Zarnadze, Bäuerle et al. help to explain the importance of these rhythms for memory

processing. Further research is now needed to fully decipher the roles of different cell types, and the

synaptic connections between them, in the formation of new memories.

DOI: 10.7554/eLife.14912.002
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Figure 1. Theta-nested gamma rhythms enhance hippocampal SWRs in vivo. (A) Representative LFP recording in an awake mouse illustrates the

occurrence of different network states in a behavioral-dependent manner. The initial spontaneous SWRs during a quiet state (left, SWR) are replaced by

a running-associated theta-nested gamma rhythm (middle), followed by another rapid reversal to SWRs (right, p-SWR). Note the higher amplitude of

the p-SWRs. Prolonged running period is marked by the black bar above. (B) (i, ii, iii) Left, three example excerpts from the trace in (A) at higher

temporal resolution. (i) Left, the initial quiet state example band-pass filtered at 2–300 Hz and 100–300 Hz to illustrate the SWRs and the corresponding

ripple component, respectively. Two SWRs are accentuated in red. Right, a single SWR together with its wavelet transform (color-coded power spectral

density with superimposed corresponding ripple trace in white). (ii) Left, the theta-nested gamma example with a small excerpt shown above. Right, the

corresponding spectral analysis demonstrates the predominant theta (7.3 Hz) and gamma (46.3 Hz) peak. (iii), the p-SWR with the same type of

illustration as for the SWR shown in (i). (C) Left, a direct comparison of the mean values of SWR areas before and after the intervening gamma episode

(n = 11, 4 mice) highlight a significant increase in SWR areas (p=0.0006, Wilcoxon signed rank test). The respective grand means are indicated by the

horizontal bold bars. Right, the corresponding percentage increase of mean SWR areas.

DOI: 10.7554/eLife.14912.003
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Results

Theta-nested gamma frequency oscillations reinforce subsequent SWRs
in awake behaving mice
We investigated two major context-dependent activity patterns, SWRs and gamma frequency oscilla-

tions, in awake behaving mice. Using local field potential (LFP) recordings from dorsal hippocampus

we found spontaneous SWRs in resting states of quietly sitting mice, while running behavior was

accompanied by theta-nested gamma oscillations (Figure 1A). As both rhythms have been proposed

as closely linked to memory processing (Axmacher et al., 2006; Girardeau et al., 2009; Jutras and

Buffalo, 2010; Jadhav et al., 2012), we studied the general interdependence of these two network

patterns in a behavioral paradigm.

As the two rhythms are each correlated with separate behavioral states (resting or running), con-

trol of behavioral expression is a means of targeting the corresponding network pattern (Figure 1A

and B). Thus, we used prolonged running episodes, at an average of 3 min, (mean 3:06 ± 0:32 min,

n = 11, 4 mice; range from 2:28 to 4:30 min depending on the actual running performance), to inves-

tigate the interaction between the two network patterns. The impact of running-associated theta-

nested gamma frequency oscillations on subsequent SWRs was evaluated by comparing the areas of

SWRs in the two-minute time windows directly preceding and following a theta-nested gamma epi-

sode. The post-gamma SWR (p-SWR) areas exhibited significantly enlargement at an average of

25.7% (n = 11, p=0.0006, Figure 1C) and no significant change in frequency (SWR: 0.18 ± 0.10 Hz;

p-SWR: 0.16 ± 0.10 Hz, n = 11, p=0.23). This result indicates an enhanced network activity and sug-

gests a surprisingly direct effect of the running associated theta-nested gamma oscillations. But the

fact that the internal state might not be fixed for an extended time period hampered conclusive

interpretation of this result. In particular, the altered p-SWR could also reflect a change of the ani-

mals internal state including the contribution of a different set of cell assembles (Buzsáki, 2015),

which is difficult to control in vivo. Consequently, in order to carry out the experiments under well-

controlled conditions with the option to investigate the underlying mechanism in detail, we switched

to a well-established in vitro model.

Gamma frequency oscillations promote long-lasting network changes in
acute slice preparations
We subsequently investigated the synaptic, cellular and molecular mechanisms of gamma oscillation-

induced effects on SWR activity in in vitro acute hippocampal slices, a model that permits the repro-

duction of both oscillatory network patterns (Gloveli et al., 2005a, 2005b; Maier et al., 2009;

Dugladze et al., 2012).

Prompted by our in vivo results, we investigated the interaction and interdependence of gamma

frequency oscillations and SWRs by monitoring LFPs in the stratum pyramidale of the hippocampal

area CA3. In good agreement with our in vivo results, SWRs and gamma frequency oscillation pat-

terns represented two ‘competing’, mutually exclusive network states in vitro: spontaneously occur-

ring SWRs (mean frequency: 1.33 ± 0.10 Hz, n = 30) disappeared shortly (31.0 ± 2.8 s) after bath

application of kainic acid (KA, 400 nM) and reappeared within a few minutes (14.6 ± 0.7 min) after

KA washout (Figure 2A). However, also in line with our in vivo data, the two network patterns were

not fully independent – plastic changes initiated in the network by means of persistent gamma activ-

ity altered the subsequent SWR pattern (Figure 2A and B). The p-SWRs exhibited a significantly

increased area (by 69.7 ± 15.1%, n = 30, p<0.0001, Figure 2C) and a small decrease in incidence (to

0.90 ± 0.10 Hz, n = 30, p<0.0001). In addition, we found a slight but significant increase in average

ripple number (by 8.5 ± 2.5%, n = 12, p=0.0065) and an elevated oscillatory ripple frequency (by 4.1

± 1.8%, n = 12, p=0.041). These changes were accompanied by a significant increase of post-gamma

sharp wave amplitude (by 44.6 ± 19.3%, n = 12, p=0.042) and a non-significantly altered sharp wave

duration (increased by 2.5 ± 2.9%, n = 12, p=0.41). In good agreement with these data, gamma

oscillations induced by bath application of carbachol (20 mM), an alternative drug to trigger persis-

tent gamma oscillations based on a different mechanisms (Fisahn et al., 1998; 2002; Hajos et al.,

2004), also resulted in a significant increase in SWR area (by 21.0 ± 4.2%, n = 16, p=0.0002, see also

Zylla et al., 2013), indicating that gamma activity itself, and not the pharmacological agent, is

responsible for the network alterations. Moreover, we found a highly significant positive correlation
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of the network gamma oscillations (power�duration) with the SWR-area increase (R = 0.58, n = 30,

p=0.0007) and no correlation with the SWR incidence (R = �0.28, n = 30, p=0.14). In line with this,

in a few cases where KA application failed to introduce gamma frequency oscillations, no changes in

SWR-area were observed (reduction by 6.0 ± 19.4%, n = 8, p=0.35). Notably, in comparison to KA,

carbachol-triggered gamma oscillations exhibited less spectral power (p=0.007) and accordingly

induced smaller SWR area changes (p=0.02), suggesting an activity-dependent mechanism of oscilla-

tion-induced neuronal network plasticity. Furthermore, we also found a reinforcing effect of gamma

rhythms on subsequent gamma episodes (Figure 3). Together, these results emphasize the general

potential of gamma oscillations to modify network activities.

To reveal the molecular mechanism underlying the network plasticity we examined the effects of

activation of metabotropic glutamate (mGluR)5- and/or N-methyl-D-aspartate receptors (NMDAR)

that have been proposed to play an important role in hippocampal synaptic plasticity and memory

(Zalutsky and Nicoll, 1990; Nakazawa et al., 2002; Naie and Manahan-Vaughan, 2004). Adminis-

tration of mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP) largely reduced the SWR

Figure 2. Gamma rhythms promote long-lasting alterations in the network activity. (A) SWRs recorded in the stratum pyramidale of the CA3 region

occurred spontaneously (left), disappeared shortly after bath application of KA (middle) and reappeared with a significantly higher amplitude after KA

washout (right). (B) Example of the wavelet transform (color-coded power spectral density) for three consecutive highlighted SWRs (white trace) before

(SWR) and after (p-SWR) intermediate gamma oscillations. (C) p-SWR areas (red-filled squares) increased significantly compared to the SWR areas (gray-

filled squares). MPEP (50 mM) administration largely prevented p-SWR area increase (black, open triangles). The time courses of drug applications are

depicted schematically. The horizontal lines mark the p-SWR data points used for statistical analyses. The significance stars compare the pre-gamma

data with the marked post-gamma data. The number of asterisks indicates the significance level (Student’s t-test). Insert, examples of SWR (gray) and

p-SWR (red and black) without (left) and with MPEP (right) administration during gamma rhythms. (D) Effects of AP5 (50 mM, green open squares) and

MPEP+AP5 (black filled triangles) on SWR area increase. Insert, examples of corresponding SWR (gray) and p-SWR (green and black). (E) Gamma

oscillation-induced SWR area increase (LTP) is reduced significantly by administration of AP5 (green open bar), MPEP (black open bar) and MPEP+AP5

(black filled bar).

DOI: 10.7554/eLife.14912.004
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area increase (by 83.4 ± 6.2%, n = 16, p<0.0001, Figure 2C and E). A similar, albeit less pronounced

effect was observed for the NMDAR antagonist, DL-2-Amino-5-phosphonopentanoic acid (AP5)

(reduction by 51.7 ± 8.9%, n = 13, p<0.0001, Figure 2D and E). Finally, this form of plasticity was

abolished by joint application of the mGluR5 and NMDAR antagonists (reduction by 91.8 ± 12.2%, n

= 14, p<0.0001, Figure 2D and E). Taken together, these results suggest that in the hippocampal

area CA3, gamma frequency oscillations influence the subsequent network activity through mGluR5-

and NMDAR-dependent mechanisms.

Gamma frequency oscillations support long-lasting synaptic plasticity in
the CA3 network
We next studied activity-dependent alteration in synaptic transmission, defined here by synaptic

strength, in CA3 PC by examining long-lasting changes in p-SWR-associated excitatory and inhibi-

tory synaptic currents (p-EPSCs and p-IPSCs, Figure 4). Our data demonstrate that parallel to the

field p-SWR (Figure 2), cells held in current-clamp mode during gamma oscillations (see Materials

and Methods) exhibit long-lasting increase in the area of p-EPSCs (by 104.2 ± 21.2%, n = 14,

p=0.0003, Figure 4B). The change in the EPSC strength correlates positively with the magnitude of

SWR-area increase (R = 0.56, n = 14, p=0.040). Conversely, p-EPSCs recorded in PCs held in volt-

age-clamp mode at �70 mV during gamma oscillations decreased rather than increased (by 40.6 ±

7.7%, n = 13, p=0.0002, Figure 4B), suggesting that the increase of EPSC area depend on PC post-

synaptic depolarization. The p-EPSC in voltage-clamp mode might also be affected by altered inhibi-

tion (see below).

To clarify the underlying molecular mechanism, we compared the properties of these currents in

the presence and absence of mGluR5 antagonist MPEP. Similar to the effects on the LFP, bath appli-

cation of MPEP strongly reduced the increase in p-EPSC area of CA3 PCs (reduction by 90.3 ± 7.1%,

n = 6, p=0.0001, Figure 4B). These data provide direct evidence for an mGluR5-dependent increase

of the excitatory synaptic strength onto PCs as an effect of an intermediate gamma episode. Close

temporal correlation existed between these changes and the network alterations described above.

We further investigated whether oscillatory gamma activity-dependent modification of the hippo-

campal network also includes alteration in inhibitory synaptic strength. In contrast to the strongly

Figure 3. Gamma frequency oscillations promote changes in network activity. (A) Brief ‘weak’ field gamma

episodes were induced by bath application of 50 nM KA. After this test period, ‘conventional’ gamma frequency

oscillations were induced by 400 nM KA application, followed by KA washout achieving a complete cessation of

oscillatory gamma activity. In a third step, the network behavior was again tested with low KA concentration as

applied in the first step. Left, a ‘weak’ gamma episode (top, gray: 1st ‘weak’ gamma) becomes significantly

stronger (bottom, black: 2nd ‘weak’ gamma) after ‘conventional’ (‘KA 400 nM’) gamma oscillations. Right,

corresponding spectral analysis of 1st and 2nd ‘weak’ gamma. (B) Summary bar charts of peak power and frequency

obtained before (1st ‘weak’ gamma) and after ‘conventional’ gamma (2nd ‘weak’ gamma). Spectral power of

gamma rhythms increased from 0.72 x 10-4 ± 0.39 x 10-4 mV2/Hz to 1.34 x 10-4 ± 0.50 x 10-4 mV2/Hz (n = 10,

p=0.003) while frequency remained unchanged, illustrating that the intervening gamma episode has a reinforcing

effect.

DOI: 10.7554/eLife.14912.005
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Figure 4. Gamma frequency oscillations support long-lasting synaptic plasticity. (A) Light micrograph of an example CA3 PC. Insert: The regular firing

pattern of this PC in response to a depolarizing current injection. (B) The area of SWR-associated EPSC increases significantly after gamma frequency

oscillations (gray and red filled squares for EPSCs and p-EPSC, respectively). Administration of MPEP (50 mM) prevents the increase of p-EPSC (gray and

black filled triangles illustrate EPSC and p-EPSC, respectively). Holding PCs in voltage clamp configuration at �70 mV during gamma frequency

oscillations leads to a significant decrease in EPSC area (gray and red open squares for EPSC and p-EPSC, respectively). The significance stars compare

the pre-gamma data with the marked post-gamma data. Insert: Representative examples of EPSC (gray) and p-EPSC recorded without (left, red) and

with MPEP (middle, black), as well as using voltage clamping of cells during gamma rhythms (right, red, gamma-VC). (C) SWR-associated IPSCs exhibit a

moderate increase in area in PCs held in both current- (filled gray and blue triangles) and voltage-clamp mode (open gray and black triangles for IPSC

and p-IPSC, respectively) during gamma rhythms. Inserts: Representative examples of corresponding IPSC (gray) and p-IPSC (gamma-CC, blue and

gamma-VC, black). (D) Contra-directional change in p-EPSC to p-IPSC ratio for PCs held in current- (gamma-CC) vs. voltage-clamp mode (gamma-VC)

during gamma rhythms (normalized to pre-gamma values).

DOI: 10.7554/eLife.14912.006

Zarnadze et al. eLife 2016;5:e14912. DOI: 10.7554/eLife.14912 7 of 16

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.14912.006
http://dx.doi.org/10.7554/eLife.14912


potentiated p-EPSC, p-IPSCs showed a less pronounced but still significant increase (32.8 ± 12.9%, n

= 8, p=0.039, Figure 4C). Altogether, p-EPSC and p-IPSC alterations resulted in a significant

increase in the PC EPSC-to-IPSC ratio (by 44.4 ± 14.6%, p=0.019, Figure 4D). In stark contrast to

the EPSC potentiation, changes in IPSCs were independent of postsynaptic activation. PCs held in

voltage-clamp mode during gamma oscillations exhibited a similar IPSC increase of 30.3 ± 7.3% (n =

6, p=0.0089, Figure 4C), indicating activity-dependent changes in presynaptic inhibitory INs.

Gamma rhythms promote cell type-specific synaptic plasticity in CA3
interneurons
To further elucidate the cellular mechanisms underlying the differential alterations in PC excitatory

and inhibitory synaptic strength we examined the gamma frequency-dependent changes in two

major inhibitory cell types: fast spiking PV-expressing INs targeting perisomatic or proximal dendritic

domains of PCs and regular spiking CCK-containing perisomatic targeting cells. Fast-spiking PV-pos-

itive cells (Figure 5A) showed strong potentiation of EPSCs (increased by 89.8 ± 20.2%, n = 12,

p=0.0010), whereas IPCSs decreased slightly but significantly (n = 5, p=0.038, Figure 5B). Com-

bined, the latter translated into a significant rise in the EPSC-to-IPSC ratio (from 3.78 ± 0.83 to 7.71

± 1.39, n = 5, p=0.012, Figure 5B). Similarly to the effect on PCs, application of mGluR5 antagonist

MPEP strongly reduced the increase in p-EPSC area of PV-expressing INs (reduction by 84.6 ± 4.2%,

n = 5, p=0.0001, Figure 5B). Markedly different, even inverse alterations were observed in the regu-

lar firing CCK-containing perisomatic targeting INs (Figure 6A): IPSCs were increased (by 61.01 ±

16.0%, n = 5, p=0.019), whereas EPSCs showed no change (reduction by 0.1 ± 10.6%, n = 8,

p=0.99). As such, the EPSC-to-IPSC ratio was significantly reduced in these INs (from 2.14 ± 0.39 to

1.21 ± 0.26, n = 5, p=0.024, Figure 6B). These data, quantified by alterations in the EPSC-to-IPSC

ratio, demonstrate that gamma frequency oscillations induce cell type-specific synaptic plasticity in

Figure 5. Increased excitability of fast spiking PV-expressing interneurons. (A) Top: A confocal image of a typical PV-expressing IN filled with biocytin.

Insert: Fast firing pattern in response to depolarizing current injection. Bottom: Immuno-reactivity of the biocytin filled cell for PV. (B) Normalized EPSC

(gray squares), IPSC (gray triangles), p-EPSC (red squares) and p-IPSC (blue triangles) recorded from PV-positive INs held in current-clamp mode during

gamma rhythms. Administration of MPEP (50 mM) prevents the increase of p-EPSC (gray and black open triangles illustrate EPSC and p-EPSC,

respectively). The significance stars compare the pre-gamma data with the marked post-gamma data. Inserts: left, representative examples of EPSC

and IPSC (gray) with corresponding p-EPSC (red) and p-IPSC (blue); right, the EPSC-to-IPSC ratio before (pre) and after (post) gamma rhythms

demonstrates that the excitability significantly increases in PV-positive INs.

DOI: 10.7554/eLife.14912.007
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the CA3 inhibitory network, with enhanced net excitation of PV-expressing INs, but reduced activa-

tion of CCK-expressing INs.

Discussion
We have demonstrated that gamma frequency oscillations induce activity-dependent and cell type-

specific synaptic plasticity in hippocampal area CA3. Moreover, our results illustrate the impact of

oscillatory gamma activity on SWRs, a network state associated with the process of memory consoli-

dation (Girardeau et al., 2009; Jadhav et al., 2012). The plastic changes require mGluR5 mediated

activation, indicating that this receptor might be critically involved in memory processing.

We found that SWRs in vivo displayed a significantly enlarged area after a running episode, indi-

cating a reinforcing effect of the running associated theta-nested gamma oscillations. Our data are

well in line with a recent publication (Bittner et al., 2015) demonstrating that the induction of new

place-fields initiated during active running results in altered neuronal activity during subsequent

SWRs. While the oscillatory theta component does not seem to be essential for the induction of plas-

tic changes in the hippocampus in vivo (Brandon et al., 2014), gamma rhythms are thought to con-

stitute time windows of synchronized neural activity that promote spike-time-dependent synaptic

plasticity (Axmacher et al., 2006) and enhance signal transmission (Sohal et al., 2009). In line with

this, our in vitro results clearly demonstrate that a gamma frequency episode significantly affects

subsequent network activities including gamma oscillations and SWRs. The gamma activity-induced

effect (SWR area increase) was independent of the pharmacologic agent (KA vs. carbachol) used for

their induction, but did correlate with the presence and power of gamma frequency oscillations.

Indeed, activity dependent increase of SWR amplitude was shown by high-frequency electrical stimu-

lation (Behrens et al., 2005). Thus, our results provide comprehensive data that the gamma oscilla-

tions and not the pharmacologic agents themselves (Zylla et al., 2013) are responsible for the

observed network plasticity.

Figure 6. Reduced excitability of regular spiking CCK-expressing interneurons. (A) Top: A confocal image of a typical CCK-expressing IN filled with

biocytin. Insert: Regular firing patterns in response to depolarizing current injection. Bottom: Immuno-reactivity of the biocytin filled cell for CCK. (B)

Normalized EPSC (gray squares), IPSC (gray triangles), p-EPSC (red squares) and p-IPSC (blue triangles) recorded from CCK-expressing INs held in

current-clamp mode during gamma frequency oscillations. The significance stars compare the pre-gamma data with the marked post-gamma data.

Inserts: Left, representative examples of EPSC and IPSC (gray) with corresponding p-EPSC (red) and p-IPSC (blue); right, the EPSC-to-IPSC ratio before

(pre) and after (post) gamma rhythms demonstrates that the excitability significantly decreases in CCK-positive INs.

DOI: 10.7554/eLife.14912.008
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Different forms of plasticity have been described for the three excitatory input systems converg-

ing on CA3 PCs: mossy fibers and associational-commissural (A/C) and perforant path (PP) projec-

tions (Urban and Barrionuevo, 1996; McMahon and Barrionuevo, 2002; Nakazawa et al., 2002;

Kobayashi and Poo, 2004; Nicoll and Schmitz, 2005; Rebola et al., 2011). However, crucially, the

latter publications and similar studies on hippocampal neuronal plasticity have certain methodologi-

cal limitations. First, they were usually elicited by high-frequency electrical stimulation of neurons

providing afferent input, whereas the predominant firing rate of CA3 PCs and their afferent neurons

in vivo is far less frequent (Hahn et al., 2007; Jung and McNaughton, 1993). Second, electrical

stimulation was usually limited to one of these inputs, whereas, in the intact hippocampal network,

individual inputs do not act in isolation, but converge onto postsynaptic cells. Thus, during physio-

logical activity patterns, such as gamma frequency oscillations, different inputs to CA3 PCs may act

synergistically, with their joint activity resulting in a specific alteration of synaptic strength. Conse-

quently, the here investigated oscillatory pattern might constitute a more physiological paradigm

that can elucidate network-dependent mechanisms of synaptic plasticity. With our approach, we

reveal a unique role of gamma frequency oscillations in activity-dependent modification of hippo-

campal network. Our results highlight this oscillatory network rhythm as a fundamental mechanism

to induce synaptic plasticity and a potential primary driving force for memory processing. Neverthe-

less, the specific role of an individual input for gamma-dependent plasticity in hippocampal network

remains to be clarified.

Our data lend further support to the hypothesis that, overall, the two major memory relevant

oscillatory patterns, gamma frequency oscillations and SWRs that are generated during different

behavioral states in freely moving animals (Chrobak et al., 2000), can be considered two ‘compet-

ing’, mutually exclusive network states: spontaneous occurring SWRs disappeared shortly after onset

of gamma rhythms and reappeared after their termination, both in vivo and in vitro. However, these

two network patterns are not fully independent: plastic changes initiated in the network during per-

sistent gamma activity were reflected in a subsequent altered SWR activity (Figure 1 and Figure 2).

Consistent with the here observed tight link of gamma oscillations and SWR activity, sleep-depen-

dent memory consolidation is associated with increased gamma activity (Ognjanovski et al., 2014)

and cells active during exploratory behavior exhibit enhanced SWR-associated EPSCs in subsequent

slice preparations (Mizunuma et al., 2014).

Our data suggests that mGluR5 is a key component of the process underlying the observed plas-

tic changes in the hippocampal CA3 network. In line with our findings, impairment of both LTP and

spatial learning as well as place field encoding of novel environments induced by mGluR5 antago-

nists have been reported (Naie and Manahan-Vaughan, 2004; Zhang and Manahan-Vaughan,

2014). Group I mGluRs, comprising of mGluR5 and mGluR1, are preferentially expressed postsynap-

tically in CA3 PC dendrites (Shigemoto et al., 1997). Even though NMDAR might be involved, our

results show that mGluR5 is more central in gamma network oscillation-induced synaptic plasticity.

The effect can only partially be explained by NMDAR-modulation, with mGluR5 obviously exerting a

more complex impact on the neuronal network dynamics, affecting both PC and IN activity. Interest-

ingly, dysregulation of mGluR5 has been reported in several profound neurological disorders, such

as schizophrenia (Conn et al., 2009; Nickols and Conn, 2014), autistic spectrum disorders (Wil-

liams, 2012) and fragile X syndrome (Michalon et al., 2012), altogether pointing towards a pivotal

regulatory function for this receptor. Our results highlight mGluR5 now in the general context of

memory processing and neuronal plasticity.

In contrast to the postsynaptically mediated potentiation of PCs excitatory currents, inhibitory

currents only underwent minimal changes that were independent of postsynaptic activation. These

differences could be explained by a cell-specific, directionally biased synaptic plasticity at PC-IN and

IN-IN synapses as demonstrated for two major types of GABAergic inhibitory cells, PV- and CCK-

expressing INs. Gamma network oscillations alter synaptic strength within PV-expressing INs in favor

of excitation (Alle et al., 2001), while CCK-expressing INs are subject to stronger inhibition, as dem-

onstrated by the EPSC-to-IPSC ratio analysis. Importantly, inhibition provided by these two types of

GABAergic cells is not uniform. Fast-spiking PV-expressing INs mediate a rapid, phasic-form of inhi-

bition, which contributes to the precise timing of neuronal synchronization and emergence of net-

work oscillations (Gloveli et al., 2005a; Sohal et al., 2009; Schlingloff et al., 2014). In contrast,

regular firing CCK-expressing INs mediate slower inhibition (Hefft and Jonas, 2005; Daw et al.,

2009) and modulate excitability in cortical networks in a behavioral state-dependent manner. Thus,
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the two IN types mediate distinct forms of inhibition and could contribute differentially to cortical

network activity. Our data now suggest that divergent forms of synaptic plasticity observed in these

two IN types could result in a reduced tonic but increased phasic inhibition onto PC. These changes

in turn might lead to enhanced network excitability and promote synaptic plasticity within the corti-

cal circuits.

In summary, we conclude that gamma frequency oscillations represent a network state responsi-

ble for activity-dependent and cell type-specific synaptic plasticity, interlinking two memory-relevant

network patterns, namely, gamma rhythms and SWRs.

Materials and methods

Animals
Experiments were performed on P27-P33 (in vivo) and P18-P23 (in vitro) C57/Bl6 mice. All animal

procedures were approved by the Regional Berlin Animal Ethics Committee (Permits: G0151/12 and

T 0124/05) and were in full compliance with national regulations.

Local field potentials in vivo
We recorded LFP from head-fixed mice, a well-established approach that allowed us to conduct pro-

longed running episodes. Mice were first implanted with a head-holder and a recording chamber

(1.5% isoflurane anesthesia) and then habituated to a spherical treadmill for around 12 days. After-

wards, a small craniotomy (approx. 2.3 mm rostro-caudal and 2.5 mm lateral from bregma; 1.5% iso-

flurane anesthesia) was performed inside the recording chamber and the exposed area covered with

a layer of silicone elastomer (Kwik-Sil, World Precision Instruments). The mouse was allowed to

recover for at least 2 hr before the recording session started (one recording session per mouse).

LFP from the left hippocampus were recorded with glass pipettes, while we were using the con-

trol of behavioral expression without a task-specific reward to target certain network patterns. To

investigate the impact of a theta-nested gamma episode on SWRs we first waited for a prolonged

resting period with a quietly sitting mouse on the spherical treadmill allowing us to record spontane-

ous SWR activity. Then, once the mouse had begun to move independently, a pressurized air stream

was applied to the bottom of the Styrofoam ball, resulting in a smooth ball rotation that encouraged

a running behavior accompanied by theta-nested gamma oscillations. If the mouse stopped running

and began to balance the air-supported ball instead, we accelerated the ball slightly until running

behavior was restored, maintaining an activity phase around 3 min in total depending on the actual

running performance. Turning off the air pressure usually terminated the running behavior and initi-

ated another resting period, once again accompanied by spontaneous occurring SWRs. In order to

reduce the stress level while maintaining the attentional component, some dummy runs were per-

formed prior to the final recording session.

Matlab analysis of in vivo data
All in vivo LFP data were analyzed in Matlab (MathWorks Inc., Natick, Massachusetts) by means of

custom-made routines. We compared the SWR areas of two time periods (120 s each) ending 10 s

before and starting 30 s after the prolonged running episode. LFP recordings were divided into a

sharp wave (filtered 2–50 Hz) and a ripple (filtered 100-300 Hz) trace. We used the ripple trace to

automatically preselect SWRs based on a voltage and a spectral threshold criterion. In detail, we first

used a voltage threshold (mean plus six standard deviations of event-free recording) for a primary

selection of individual ripples and grouped adjacent single ripples to a ripple event. We then took

70 ms cutouts of the event-free recording preceding those ripple events and calculated each maxi-

mum absolute wavelet coefficients of the complex Morlet wavelet transform (27 wavelet scales, 20

kHz sampling rate). We used the mean plus one standard deviation of this distribution as a spectral

threshold criterion and discarded all ripple events, in which the maximum absolute wavelet coeffi-

cient did not exceed the threshold value. The preceding and subsequent local minima in the sharp

wave trace were used to automatically identify SWR start and end points. However, the bandpass

(2–50 Hz) filtered in vivo sharp wave trace still exhibited a remarkable variation, leading to incorrect

boundaries in some cases. Consequently, the sharp wave, ripple and original recording traces were

scrutinized by eye (Forro et al., 2015). We rejected erroneously detected SWRs and manually
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adjusted the automatically identified start and end points if required. Finally, the SWR area was

defined in the sharp wave trace as the area beneath the curve enclosed by those start and end

points. However, comparing the uncorrected automatically identified SWRs we also obtained a sta-

tistically significant difference. Spectral power densitiy of gamma frequency oscillations were deter-

mined with an Welch algorithms (pwelch) and the complex Morlet wavelet transform (cmor2-1) was

used to display SWR (bandpass filter 100–300 Hz, 134 wavelet scales, 20 kHz sampling rate).

Slice preparation
The animals were anesthetized with inhaled isoflurane, decapitated and the brains removed. Tissue

blocks containing the hippocampal formation were mounted on a Vibratome (Leica VT1200) in a

chamber filled with ice-cold artificial cerebrospinal fluid (ACSF). Transverse hippocampal slices were

cut at 400 mm thickness and incubated for at least 1 hr in a holding ‘interface’ chamber (continuously

oxygenized with carbogen and perfused with ACSF at ~2 mL/min) and then transferred to the

recording ‘submerged’ chamber (perfused at a rate of 6 mL/min), both at 33 ± 1˚C. The solution

used during cutting, incubation and recording contained (in mM): NaCl, 129; KCl, 3; NaH2PO4, 1.25;

CaCl2, 1.6; MgSO4, 1.8; NaHCO3, 21; glucose, 10; saturated with 95% O2 and 5% CO2, pH 7.4; 290–

310 mOsm.

Local field potentials in vitro
LFP were obtained from the stratum pyramidale of the hippocampal CA3 area. KA (400 nM, unless

indicated otherwise) or carbachol (20 mM) were applied in the bath to induce network gamma fre-

quency oscillations. The SWR oscillations occurred spontaneously, disappeared shortly after bath

application of KA or carbachol and reappeared within a few minutes after their washout. mGluR5

and/or NMDAR activation was blocked by MPEP (50 mM, Tocris Bioscience) and/or AP5 (50 mM, Toc-

ris Bioscience). MPEP and/or AP5 were launched simultaneously to KA, but continued throughout

the entire oscillatory gamma network episode.

Field oscillations were low pass filtered at 5 kHz, digitized at 10 kHz (Digidata 1440A, Axon

Instruments) and analyzed with the pClamp software package (notch filter 50 Hz; Axon Instruments).

Oscillatory peak power and frequency was determined by averaging several consecutive fast Fourier

transforms (FFT). SWRs were identified and the area under curve calculated (pClamp software, Axon

Instruments). A Student’s t-test was used for statistical comparisons unless stated otherwise; differ-

ences were considered significant if p<0.05. Average values are expressed as mean ± SEM. Spear-

man’s rho was used to assess statistical dependence. Pre- and post-gamma data values were

normalized to the mean of all prior gamma data. The EPSC-to-IPSC ratio was used to assess the net

changes in cellular excitability. We further analyzed the spectral components of the LFPs with custom

routines written in Matlab. Signals were zero-phase digital filtered from 2–300 Hz using a Butter-

worth filter, 50 Hz components including their harmonics were removed using a second-order infinite

impulse response notch filter. A complex Morlet wavelet transform (cmor2-1) was used to display

SWRs (bandpass filter 100–300 Hz, 134 wavelet scales, 20 kHz sampling rate).

Whole-cell recording in vitro
The patch-clamp recordings were obtained from PCs and INs of hippocampal CA3 area visualized

by infrared differential interference contrast video microscopy. The intrinsic and firing properties of

cells were measured in whole-cell current-clamp mode as described previously (Gloveli et al.,

2005a). In order to follow the Hebbian plasticity rules, during gamma frequency oscillations, cells

were recorded in current-clamp mode enabling them to generate action potentials. In an additional

set of experiments, the PCs were held in voltage-clamp mode at �70 mV during gamma activity to

prevent their depolarization. Whole-cell recording pipettes (3–5 MW) were filled with a solution con-

taining (in mM): K-gluconate, 135; KCl, 5; ATP-Mg, 2; GTP-Na, 0.3; HEPES, 10; plus biocytin, 0.5%

(pH 7.4 and 290 mOsm). A Multiclamp 700B amplifier and pClamp software (Axon Instruments) were

used for current- and voltage-clamp recordings. The holding potential in voltage-clamp mode was

either �70 mV or 0 mV to record the EPSCs and IPSCs, respectively. The areas under curve were cal-

culated for EPSCs and IPSCs and the EPSC-to-IPSC ratios were determined. The seal resistance

before establishing whole-cell mode was �2 GW. The series resistance (range 12–18 MW) was not

compensated, but was repeatedly monitored during the experiment by measuring the amplitude of
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the capacitive current in response to a �10 mV pulse. Experiments, in which the series resistance

increased by >20% were discarded. Signals were low-pass filtered at 5 kHz, digitized at 10 kHz (Digi-

data 1440A) and analyzed using pClamp software.

The firing properties of IN [fast (>100 Hz), non-accommodating vs. regular] were studied using

intrasomatic current injection (0.5 nA). Electrophysiological identification was confirmed by post hoc

immunostaining and biocytin staining.

Immunolabeling
For immunolabeling of interneurons, slices were immersed overnight in a fixative solution containing

4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB), washed three times in 0.1 M PB and

subsequently in 0.025 phosphate-buffered saline (PBS; pH 7.3). Slices were then incubated in PBS

containing 1% Triton X-100, 10% goat serum and Mouse on Mouse (M.O.M) blocking reagent (2

drops per 2.5 ml solution) for 1 hr at room temperature (RT). To visualize PV- and CCK-containing

cells, we used antibodies against PV (mouse, Swant, Marly, CH) and CCK (mouseCURE, Los Angeles,

CA) diluted 1:5000 in PBS containing 5% goat serum and 1% Triton X-100. Slices were incubated

with primary antibodies for 48 hr at RT. After rinsing three times in PBS, sections were incubated in

the PBS solution containing 0.5% Triton X-100, 5% goat serum, goat anti-mouse conjugated with

(for PV) Alexa fluor 546 (Invitrogen Corporation, Carlsbad, CA) or (for CCK) Alexa fluor 568 (Invitro-

gen Corporation, Carlsbad, CA) diluted 1:500 or (for biocytin-filled neurons) Alexa fluor 647 (in

some experiments 350) conjugated avidin diluted 1:500 (Invitrogen Corporation, Carlsbad, CA). Sli-

ces were mounted on glass slides in the glycerol-based, aqueous mountant Vectashield (Vector Lab-

oratories) under coverslips at 48 hr after incubation with the secondary antibodies. Labeled cells

were visualized using 20x and/or 60x objectives on a confocal microscope system (Leica). To exam-

ine the full extent of somato-dendritic compartments and axonal arborization, the intensity of Z-stack

projections was optimized and the images were overlaid.

Biocytin staining
Slices were processed as described previously in principle (Dugladze et al., 2012). For biocytin

staining, slices with biocytin-filled cells were removed from the chamber and immersed overnight in

a fixative solution containing 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB). Slices

were washed three times in 0.1 M PB. The avidin–biocytin complex reaction (Vectastain ABC kit,

Camon laboratory service) took place overnight at 4˚C in the presence of 0.3% Triton X-100 (Sigma-

Aldrich). Afterwards the sections were rinsed several times before development with 0.02% diamino-

benzidine in 0.1 M PB. The reaction product was intensified with 0.5% OsO4 and sections were

mounted and coverslipped. Stained cells were reconstructed with the aid of a Neurolucida 3D sys-

tem (MicroBrightField, Inc).

Additional Information
Matlab source code files for the calculation of FFT, Welch’s spectrogram and the wavelet transfor-

mation are available on our homepage (https://glovelilab.wordpress.com).
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Chrobak JJ, Lörincz A, Buzsáki G. 2000. Physiological patterns in the hippocampo-entorhinal cortex system.
Hippocampus 10:457–465. doi: 10.1002/1098-1063(2000)10:4<457::AID-HIPO12>3.0.CO;2-Z

Citri A, Malenka RC. 2008. Synaptic plasticity: multiple forms, functions, and mechanisms.
Neuropsychopharmacology 33:18–41. doi: 10.1038/sj.npp.1301559

Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. 1995. Synchronization of neuronal activity in hippocampus
by individual GABAergic interneurons. Nature 378:75–78. doi: 10.1038/378075a0

Conn PJ, Lindsley CW, Jones CK. 2009. Activation of metabotropic glutamate receptors as a novel approach for
the treatment of schizophrenia. Trends in Pharmacological Sciences 30:25–31. doi: 10.1016/j.tips.2008.10.006

Zarnadze et al. eLife 2016;5:e14912. DOI: 10.7554/eLife.14912 14 of 16

Research article Neuroscience

http://orcid.org/0000-0002-2209-375X
http://dx.doi.org/10.1073/pnas.251610898
http://dx.doi.org/10.1073/pnas.251610898
http://dx.doi.org/10.1113/jphysiol.2011.223669
http://dx.doi.org/10.1016/j.brainresrev.2006.01.007
http://dx.doi.org/10.1038/nrn2044
http://dx.doi.org/10.1038/nn1571
http://dx.doi.org/10.1038/nn1571
http://dx.doi.org/10.1615/CritRevNeurobiol.v18.i1-2.140
http://dx.doi.org/10.1038/nn.4062
http://dx.doi.org/10.1016/j.neuron.2014.04.013
http://dx.doi.org/10.1016/0306-4522(89)90423-5
http://dx.doi.org/10.1038/nn.3304
http://dx.doi.org/10.1002/hipo.22488
http://dx.doi.org/10.1002/1098-1063(2000)10:4%3C457::AID-HIPO12%3E3.0.CO;2-Z
http://dx.doi.org/10.1038/sj.npp.1301559
http://dx.doi.org/10.1038/378075a0
http://dx.doi.org/10.1016/j.tips.2008.10.006
http://dx.doi.org/10.7554/eLife.14912


Daw MI, Tricoire L, Erdelyi F, Szabo G, McBain CJ. 2009. Asynchronous transmitter release from cholecystokinin-
containing inhibitory interneurons is widespread and target-cell independent. Journal of Neuroscience 29:
11112–11122. doi: 10.1523/JNEUROSCI.5760-08.2009

Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T. 2012. Segregation of axonal and somatic activity
during fast network oscillations. Science 336:1458–1461. doi: 10.1126/science.1222017
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Schlingloff D, Káli S, Freund TF, Hájos N, Gulyás AI. 2014. Mechanisms of sharp wave initiation and ripple
generation. Journal of Neuroscience 34:11385–11398. doi: 10.1523/JNEUROSCI.0867-14.2014

Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno
N. 1997. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat
hippocampus. Journal of Neuroscience 17:7503–7522.

Sohal VS, Zhang F, Yizhar O, Deisseroth K. 2009. Parvalbumin neurons and gamma rhythms enhance cortical
circuit performance. Nature 459:698–702. doi: 10.1038/nature07991

Urban NN, Barrionuevo G. 1996. Induction of hebbian and non-hebbian mossy fiber long-term potentiation by
distinct patterns of high-frequency stimulation. Journal of Neuroscience 16:4293–4299.

Williams SC. 2012. Drugs targeting mGluR5 receptor offer ’fragile’ hope for autism. Nature Medicine 18:840:
840. doi: 10.1038/nm0612-840

Zalutsky RA, Nicoll RA. 1990. Comparison of two forms of long-term potentiation in single hippocampal
neurons. Science 248:1619–1624. doi: 10.1126/science.2114039

Zhang S, Manahan-Vaughan D. 2014. Place field stability requires the metabotropic glutamate receptor, mGlu5.
Hippocampus 24:1330–1340. doi: 10.1002/hipo.22314

Zylla MM, Zhang X, Reichinnek S, Draguhn A, Both M. 2013. Cholinergic plasticity of oscillating neuronal
assemblies in mouse hippocampal slices. PloS One 8:e80718. doi: 10.1371/journal.pone.0080718

Zarnadze et al. eLife 2016;5:e14912. DOI: 10.7554/eLife.14912 16 of 16

Research article Neuroscience

http://dx.doi.org/10.1016/j.nbd.2013.09.013
http://dx.doi.org/10.1038/nrn1786
http://dx.doi.org/10.1016/j.neubiorev.2009.12.014
http://dx.doi.org/10.3389/fnsys.2014.00061
http://dx.doi.org/10.3389/fnsys.2014.00061
http://dx.doi.org/10.1038/nn.2809
http://dx.doi.org/10.1523/JNEUROSCI.0867-14.2014
http://dx.doi.org/10.1038/nature07991
http://dx.doi.org/10.1038/nm0612-840
http://dx.doi.org/10.1126/science.2114039
http://dx.doi.org/10.1002/hipo.22314
http://dx.doi.org/10.1371/journal.pone.0080718
http://dx.doi.org/10.7554/eLife.14912

