8 research outputs found

    The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity.

    Get PDF
    Summary Trained immunity (TI) is a de facto innate immune memory program induced in monocytes/macrophages by exposure to pathogens or vaccines, which evolved as protection against infections. TI is characterized by immunometabolic changes and histone post-translational modifications, which enhance production of pro-inflammatory cytokines. As aberrant activation of TI is implicated in inflammatory diseases, tight regulation is critical; however, the mechanisms responsible for this modulation remain elusive. Interleukin-37 (IL-37) is an anti-inflammatory cytokine that curbs inflammation and modulates metabolic pathways. In this study, we show that administration of recombinant IL-37 abrogates the protective effects of TI in vivo, as revealed by reduced host pro-inflammatory responses and survival to disseminated candidiasis. Mechanistically, IL-37 reverses the immunometabolic changes and histone post-translational modifications characteristic of TI in monocytes, thus suppressing cytokine production in response to infection. IL-37 thereby emerges as an inhibitor of TI and as a potential therapeutic target in immune-mediated pathologies

    Dexamethasone and OLT1177 Cooperate in the Reduction of Melanoma Growth by Inhibiting STAT3 Functions

    No full text
    The NLRP3 inflammasome is a multimolecular complex that processes inactive IL-1β and IL-18 into proinflammatory cytokines. OLT1177 is an orally active small compound that specifically inhibits NLRP3. Here, B16F10 melanoma were implanted in mice and treated with OLT1177 as well as combined with the glucocorticoid dexamethasone. At sacrifice, OLT1177 treated mice had significantly smaller tumors compared to tumor-bearing mice treated with vehicle. However, the combined treatment of OLT1177 plus dexamethasone revealed a greater suppression of tumor growth. This reduction was accompanied by a downregulation of nuclear and mitochondrial STAT3-dependent gene transcription and by a significant reduction of STAT3 Y705 and S727 phosphorylations in the tumors. In vitro, the human melanoma cell line 1205Lu, stimulated with IL-1α, exhibited significantly lower levels of STAT3 Y705 phosphorylation by the combination treatment, thus affecting the nuclear functions of STAT3. In the same cells, STAT3 serine 727 phosphorylation was also lower, affecting the mitochondrial functions of STAT3. In addition, metabolic analyses revealed a marked reduction of ATP production rate and glycolytic reserve in cells treated with the combination of OLT1177 plus dexamethasone. These findings demonstrate that the combination of OLT1177 and dexamethasone reduces tumor growth by targeting nuclear as well as mitochondrial functions of STAT3

    Activation of Host-NLRP3 Inflammasome in Myeloid Cells Dictates Response to Anti-PD-1 Therapy in Metastatic Breast Cancers

    No full text
    Tumor-associated inflammation leads to dysregulated cytokine production that promotes tumor immune evasion and anti-tumor immunity dysfunction. In advanced stage breast cancer, the proinflammatory cytokine IL-1β is overexpressed due to large proportions of activated myeloid cells in the tumor microenvironment (TME). Here, we demonstrate the role of the host nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing 3 (NLRP3) inflammasome in metastatic breast cancer. In vitro, we show that stimulation of THP-1 cells with conditioned media collected from MDA-MB-468 cells induced NLRP3 activation and increased Pdcd1l1 expression. In vivo, mice deficient in NLRP3 orthotopically implanted with metastatic breast cancer cell line (E0771) showed significant reduction in tumor growth (p p ® reduced expression of Pdcd1l1 (p Casp1 (p Il1b (p ® showed reduced infiltration of myeloid-derived suppressor cells (MDSCs) (p + T cells (p p p < 0.05). These data define NLRP3 activation as a key driver of immune suppression in metastatic breast cancers. Furthermore, this study suggests NLRP3 as a valid target to increase efficacy of immunotherapy with checkpoint inhibitor in metastatic breast cancers

    Interleukin-37 treatment of mice with metabolic syndrome improves insulin sensitivity and reduces pro-inflammatory cytokine production in adipose tissue

    No full text
    Obesity and the metabolic syndrome are characterized by chronic, low-grade inflammation mainly originating from expanding adipose tissue and resulting in inhibition of insulin signaling and disruption of glycemic control.Transgenic mice expressing human interleukin 37 (IL-37),an anti-inflammatory cytokine of the IL-1 family,are protected against metabolic syndrome when fed a high-fat diet (HFD) containing 45% fat. Here, we examined whether treatment with recombinant IL-37 ameliorates established insulin resistance and obesity-induced inflammation. WT mice were fed a HFD for 22 weeks and then treated daily with IL-37 (1 ug/mouse) during the last 2 weeks. Compared with vehicle only-treated mice, IL-37-treated mice exhibited reduced insulin in the plasma and had significant improvements in glucose tolerance and in insulin content of the islets.The IL-37 treatment also increased the levels of circulating IL-1 receptor antagonist. Cultured adipose tissues revealed that IL-37 treatment significantly decreases spontaneous secretions of IL-1β, tumor necrosis factor α (TNFα), and CXC motif chemokine ligand 1 (CXCL-1). We also fed mice a 60% fat diet with concomitant daily IL-37 for 2 weeks and observed decreased secretion of IL-1β, TNFα, and IL-6 and reduced intracellular levels of IL-1β in the liver and adipose tissue, along with improved plasma glucose clearance. Compared with vehicle treatment, these IL-37-treated mice had no apparent weight gain. In human adipose tissue cultures, the presence of 50 pM IL-37 reduced spontaneous release of TNF and 50% of lipopolysaccharide-induced TNFα. These findings indicate that IL-37's anti-inflammatory effects can ameliorate established metabolic disturbances during obesity.</p
    corecore