7 research outputs found

    Bioengineered Lysozyme Reduces Bacterial Burden and Inflammation in a Murine Model of Mucoid Pseudomonas aeruginosa Lung Infection

    Get PDF
    The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature\u27s repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, a

    Lung function and microbiota diversity in cystic fibrosis

    Get PDF
    Abstract: Background: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge. A pivotal step towards leveraging microbiome approaches in CF clinical care is to understand the ecology of the CF lung microbiome and identify ecological patterns of CF microbiota across a wide spectrum of lung disease. Assessing sputum samples from 299 patients attending 13 CF centres in Europe and the USA, we determined whether the emerging relationship of decreasing microbiota diversity with worsening lung function could be considered a generalised pattern of CF lung microbiota and explored its potential as an informative indicator of lung disease state in CF. Results: We tested and found decreasing microbiota diversity with a reduction in lung function to be a significant ecological pattern. Moreover, the loss of diversity was accompanied by an increase in microbiota dominance. Subsequently, we stratified patients into lung disease categories of increasing disease severity to further investigate relationships between microbiota characteristics and lung function, and the factors contributing to microbiota variance. Core taxa group composition became highly conserved within the severe disease category, while the rarer satellite taxa underpinned the high variability observed in the microbiota diversity. Further, the lung microbiota of individual patient were increasingly dominated by recognised CF pathogens as lung function decreased. Conversely, other bacteria, especially obligate anaerobes, increasingly dominated in those with better lung function. Ordination analyses revealed lung function and antibiotics to be main explanators of compositional variance in the microbiota and the core and satellite taxa. Biogeography was found to influence acquisition of the rarer satellite taxa. Conclusions: Our findings demonstrate that microbiota diversity and dominance, as well as the identity of the dominant bacterial species, in combination with measures of lung function, can be used as informative indicators of disease state in CF. BBFJdPr3cu-jH3LTAhe361Video Abstrac

    Promoting smoking abstinence among patients with chronic obstructive pulmonary disease: Initial feasibility

    No full text
    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the U.S., with the majority of COPD deaths attributable to cigarette smoking. Despite this, individuals with COPD have a higher prevalence of smoking, poorer quit rates, and higher relapse rates compared to smokers without a COPD diagnosis. We examined the feasibility of an incentives-based intervention for producing an initial period of biochemically-verified smoking abstinence among daily smokers with COPD. Participants were randomly assigned to a Contingent (n = 13) or Noncontingent (n = 16) incentives condition and visited the clinic for 14 consecutive days. Contingent participants earned vouchers with monetary value contingent on breath carbon monoxide (CO) levels during Study Days 1–5 and urinary cotinine during Days 6–14. Voucher earnings began at 9.00andincreasedby9.00 and increased by 1.50 with each subsequent negative sample for maximum possible of $362.50. Noncontingent participants received vouchers of comparable value independent of smoking status. Differences between conditions varied across study days for daily smoking abstinence (X2 = 45.27, p < 0.0001), CO (F(13, 280) = 1.95, p = 0.025), and cotinine (F(13, 279) = 2.20, p = 0.010), with generally higher rates of abstinence and lower CO and cotinine levels observed in the Contingent vs. Noncontingent conditions. Results from this randomized pilot study support the potential efficacy of an incentives-based intervention for reducing cigarette smoking among individuals with COPD. Further research efforts should seek to promote and evaluate longer-term abstinence and associated changes in respiratory function. Keywords: Chronic obstructive pulmonary disease, Smoking, Behavioral intervention, Financial incentives, Vouchers, Contingency management, Carbon monoxide, Cotinin

    Lung function and microbiota diversity in cystic fibrosis

    Get PDF
    Abstract: Background: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge. A pivotal step towards leveraging microbiome approaches in CF clinical care is to understand the ecology of the CF lung microbiome and identify ecological patterns of CF microbiota across a wide spectrum of lung disease. Assessing sputum samples from 299 patients attending 13 CF centres in Europe and the USA, we determined whether the emerging relationship of decreasing microbiota diversity with worsening lung function could be considered a generalised pattern of CF lung microbiota and explored its potential as an informative indicator of lung disease state in CF. Results: We tested and found decreasing microbiota diversity with a reduction in lung function to be a significant ecological pattern. Moreover, the loss of diversity was accompanied by an increase in microbiota dominance. Subsequently, we stratified patients into lung disease categories of increasing disease severity to further investigate relationships between microbiota characteristics and lung function, and the factors contributing to microbiota variance. Core taxa group composition became highly conserved within the severe disease category, while the rarer satellite taxa underpinned the high variability observed in the microbiota diversity. Further, the lung microbiota of individual patient were increasingly dominated by recognised CF pathogens as lung function decreased. Conversely, other bacteria, especially obligate anaerobes, increasingly dominated in those with better lung function. Ordination analyses revealed lung function and antibiotics to be main explanators of compositional variance in the microbiota and the core and satellite taxa. Biogeography was found to influence acquisition of the rarer satellite taxa. Conclusions: Our findings demonstrate that microbiota diversity and dominance, as well as the identity of the dominant bacterial species, in combination with measures of lung function, can be used as informative indicators of disease state in CF. Video Abstrac
    corecore