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Abstract

Background: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and
mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial,
involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic
culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections
remains a crucial challenge. A pivotal step towards leveraging microbiome approaches in CF clinical care is to
understand the ecology of the CF lung microbiome and identify ecological patterns of CF microbiota across a wide
spectrum of lung disease. Assessing sputum samples from 299 patients attending 13 CF centres in Europe and the
USA, we determined whether the emerging relationship of decreasing microbiota diversity with worsening lung
function could be considered a generalised pattern of CF lung microbiota and explored its potential as an
informative indicator of lung disease state in CF.

Results: We tested and found decreasing microbiota diversity with a reduction in lung function to be a significant
ecological pattern. Moreover, the loss of diversity was accompanied by an increase in microbiota dominance.
Subsequently, we stratified patients into lung disease categories of increasing disease severity to further investigate
relationships between microbiota characteristics and lung function, and the factors contributing to microbiota
variance. Core taxa group composition became highly conserved within the severe disease category, while the rarer
satellite taxa underpinned the high variability observed in the microbiota diversity. Further, the lung microbiota of
individual patient were increasingly dominated by recognised CF pathogens as lung function decreased.
Conversely, other bacteria, especially obligate anaerobes, increasingly dominated in those with better lung function.
Ordination analyses revealed lung function and antibiotics to be main explanators of compositional variance in the
microbiota and the core and satellite taxa. Biogeography was found to influence acquisition of the rarer satellite
taxa.
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Conclusions: Our findings demonstrate that microbiota diversity and dominance, as well as the identity of the
dominant bacterial species, in combination with measures of lung function, can be used as informative indicators
of disease state in CF.

Keywords: Cystic fibrosis, Lung function, Lung microbiota, Lung microbiome, Disease severity, Ecological patterns,
Microbial surveillance, Biogeography, Antibiotics

Background
Cystic fibrosis (CF) is a common autosomal recessive
genetic disorder, affecting approximately 10,000 and 30,
000 people in the UK and USA, respectively [1, 2]. Mu-
tations of the CF transmembrane conductance regulator
(CFTR) gene can lead to defects in the encoded epithe-
lial cell apical membrane anion channel [3]. This results
in defective ion transport, airway surface liquid depletion
and absent or impaired mucociliary clearance [3]. Al-
though the disorder is multi-systemic, the primary cause
of morbidity and early mortality in this disease is attrib-
utable to progressive airway and lung parenchymal dam-
age, resulting from a vicious cycle of unchecked airway
infection and inflammation [4, 5].
A relatively small group of bacterial species, all of

which can be readily isolated using conventional aerobic
culture-based approaches, are associated with chronic
lower respiratory infection in CF, including Pseudo-
monas aeruginosa, Staphylococcus aureus, Burkholderia
cepacia complex, Haemophilus influenzae, Stenotropho-
monas maltophilia and Achromobacter xylosoxidans [1].
Culture-based approaches have influenced everything
from the way infections are treated to informing national
CF registries on changing pathogen prevalences with age
[6, 7]. However, molecular approaches have elucidated a
much more complex picture of polymicrobial lower air-
way infection in this disease [8–10]. In light of the rec-
ognition that CF lung microbiota are multifarious, the
limitations of culture-based diagnostic microbiology to
characterise CF lung infections have become increasingly
apparent [7]. The traditional ‘one microbe, one disease’
concept of infection pathogenesis and infection control
in CF management has therefore been brought into
question [6, 11, 12].
A crucial challenge in CF is how to use microbiomics

to direct clinical management of airway infections. In a
broader human microbiome context, it has been strongly
advocated that interventions which could help treat a
range of conditions, including chronic lung infections,
will only be discovered by understanding the ecological
and evolutionary relationships that members of a micro-
biota have with each other and with their host [13, 14].
A classical approach in traditional ecology has been to
identify and study ecological patterns and subsequently
proceed onto understanding the processes that generate

those patterns [15, 16]. One potential pattern in the CF
lower respiratory tract that warrants further investiga-
tion is that of a relationship between lung microbiota di-
versity and lung function [8, 10, 17, 18].
Forced expiratory volume in 1 s (FEV1), expressed as a

normalised percent of the predicted value (%FEV1) [19],
is widely used to monitor lung function and describe
lung disease severity in CF and other lung diseases [20,
21]. Further, %FEV1 is useful as a clinical decision tool
(i.e. whether to intensify treatment), as an outcome
measure in clinical trials, as an important determinant in
the timing of lung transplantation and as a predictor of
long-term survival [22–24]. As such, %FEV1 is a key
clinical outcome in cystic fibrosis and is currently the
single best available clinical indicator of health for indi-
viduals living with the disease [1, 2, 23, 24].
The relationship of decreasing microbiota diversity

with a reduction in lung function is an emergent eco-
logical pattern in CF that has potential as an informative
indicator of lung disease state in CF. However, evidence
for this nascent pattern originated from microbiota stud-
ies based on small patient cohorts from single CF cen-
tres [8, 10, 17, 18]. To ascertain if this pattern is
generalised requires testing with larger subject groups
from multiple CF centres, encompassing the high inter-
patient variability inherent in CF [10, 25, 26]. In trad-
itional ecology, it is generally anticipated that a
reduction of species diversity will occur as a conse-
quence of an environmental perturbation, such as a pol-
lution event [27, 28]. Under these scenarios,
unperturbed species-rich assemblages are typically
evenly distributed but following a perturbation are re-
placed by species-poor-ones with high dominance and a
restricted set of species [27, 28]. In a CF context, a re-
duction in %FEV1 could be taken as analogous to an en-
vironmental perturbation.
In the current study, we assessed sputum samples

from a large multi-centre cohort of 299 individuals from
13 CF centres in Europe and the USA, inclusive of CF
patients representing a broad cross-section of respiratory
disease (Table 1). We employed high-throughput tar-
geted amplicon sequencing to define the bacterial micro-
biota in the lower airways of each participant. This
allowed us to determine whether the relationship be-
tween diversity and lung function holds and therefore is
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Table 1 Clinical characteristics for all patients and when stratified by lung disease category
Lung disease categorya

Severe Moderate Mild

All patients < 40% 40–69% ≥ 70%

Number of patients 299 101 139 57

Sex (female:male) 137:160 39:62 66:73 32:25:00

Mean age (±SD)b 29.9 (± 10.2) 30.0 (± 10.8) 29.7 (± 10.1) 30.5 (± 9.5)

Mean %FEV1 (±SD) 49.5 (± 22.0) 25.5 (± 7.7) 53.2 (± 8.4) 82.8 (± 9.2)

CFTR Genotypec

Homozygous F508del 153 46 75 32

Heterozygous F508del 105 38 47 20

Non-F508del 39 17 17 5

Clinical status (stable:exacerbation)d 86:211 43:58 38:101 5:52

CF related diabetes 119 54 50 15

Pancreatic insufficiency 250 91 111 48

Region

Europe 161 58 73 30

USA 136 43 66 27

CF Centre

Bedford, NH, USA 17 5 9 3

Belfast, Northern Ireland 27 12 13 2

Boston, MA, USA 16 6 5 5

Burlington, VT, USA 30 8 17 5

Dublin, Ireland 1 0 1 0

Lebanon, NH, USA 6 2 2 2

London, UK 6 1 5 0

New York, NY, USAe 5 2 1 0

Newcastle, UK 26 16 8 2

Portland, ME, USA 25 14 6 5

Seattle, WA, USA 39 6 26 7

Southampton, UK 94 29 39 26

Warsaw, Poland 7 0 7 0

Antibioticsf

Amikacin 12 6 6 0

Azithromycin 64 34 22 8

Aztreonam 59 24 27 8

Ceftazidime 55 20 30 5

Ciprofloxacin 17 3 12 2

Colistin 59 32 21 6

Co-trimoxazole 13 5 5 3

Flucloxacillin 24 14 9 1

Fosfomycin 10 5 5 0

Meropenem 42 16 21 5

Tobramycin 120 49 52 19

Other antibiotics 113 39 58 14
aPredicted %FEV1 used to define lung disease categories. bAge in years at time of sampling (minimum age 12 years, maximum 72 years), cCFTR genotype cystic
fibrosis transmembrane conductance regulator genotype. Homozygous F508del, two copies of the F508del gene mutation. Heterozygous F508del, single copy of
this mutation plus another mutation. dExacerbation is protocol-defined as receiving IV antibiotic treatment for worsening pulmonary status, as determined by the
treatment team. eTwo patient samples from this centre were excluded from further analyses due to incomplete metadata. fDefined as having received a particular
antibiotic within 2 weeks prior to sputum sampling. For brevity, only antibiotics administered to 10 or more of all patients are reported above. Other antibiotics
included augmentin, cefepime, cefoxitin, ceftriaxone, cefuroxime, chloramphenicol, clindamycin, doripenem, doxycycline, imipenem, levofloxacin, linezolid,
metronidazole, minocycline, moxifloxacin, rifampicin, tazocin, teicoplanin, temocillin, tigecycline and vancomycin
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a generalised ecological pattern of CF lung microbiota.
Further, it allowed us to ascertain if declines in lung
microbiota diversity were accompanied with an increase
in lung microbiota dominance. It also enabled us to elu-
cidate the distribution of bacterial taxa, including recog-
nised CF pathogens, across patients in relation to
increasing lung disease severity. Additionally, we ex-
plored clinical and demographic factors that could ex-
plain variance in the CF lower airway microbiota.

Results
From 297 patient respiratory samples included in the
final analyses (Table 1), 598 distinct bacterial operational
taxonomic units (OTUs) were identified, with a mean (±
SD) of 86.5 (± 47.3) OTUs per sample, and a minimum
and maximum of 13 and 267 OTUs, respectively. Rela-
tionships between microbiota diversity and dominance
with lung function were tested with linear regression
(Fig. 1). Both diversity and dominance demonstrated sig-
nificant linear relationships with %FEV1, wherein diver-
sity decreased and dominance increased with a
reduction in lung function. Further, a significant nega-
tive correlation was found between diversity and domin-
ance, in that as diversity decreased, dominance increased
(Fig. 1). In order to examine the relationships between
lung function and lung microbiota characteristics fur-
ther, patients were stratified into lung disease categories,
as described in the US CF Foundation Patient Registry
[1]. In this schema, lung function (as measured by
%FEV1) is categorised as follows: greater than or equal
to 70% predicted indicates mild/normal lung disease,
40–69% predicted indicates moderate lung disease and
less than 40% predicted indicates severe lung disease [1].
Bacterial taxa were partitioned into either common

and abundant core taxa or rarer and infrequent satellite
taxa, based upon their prevalence and relative abun-
dance across samples within each lung disease category
(Fig. 2). Within the mild/normal category, 17 core and
499 satellite taxa occurred, with the former accounting
for 64.1% of the cumulative relative abundance. In the
moderate category, 17 core taxa accounting for 71.8% of
the abundance, and 566 satellite taxa occurred. Within
the severe category, in addition to 518 satellite taxa, 11
core taxa with a cumulative abundance of 78.7% occurred.
Further, core or satellite status of recognised CF patho-
gens was determined. Within each lung disease category,
four OTUs corresponding to recognised CF pathogens, P.
aeruginosa, S. aureus, S. maltophilia and B. cepacia com-
plex, had core status, while two, H. influenzae and A. xylo-
soxidans, were satellite taxa (Fig. 2). Core taxa for each
lung disease category are given in Table S1.
Common patterns of decreasing diversity with increas-

ing lung disease severity were observed for the microbiota,
the core taxa and satellite taxa (Fig. 3a). Kruskal-Wallis

tests and Hedges’ d effect size measures were used to
determine whether Fisher’s alpha indices of diversity were
significantly different between lung disease categories
(Fig. 3a, Table S2 and Figure S1). Diversity was

Diversity

D
iv

er
si

ty
D

om
in

an
ce

Lung function (%FEV

Lung function (%FEV

A

B

C

D
om

in
an

ce

0

10

20

30

40

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Fig. 1 Relationships between microbiota diversity, dominance and
lung function. a Fisher’s alpha index of diversity plotted against
percent predicted forced expiratory volume in 1 s (%FEV1). b Berger-
Parker dominance index and %FEV1. c Berger-Parker dominance
index plotted against Fisher’s alpha index of diversity. In each case
linear regression lines have been fitted: (a) r2 = 0.11, F1,295 = 36.7, P
< 0.0001; (b) r2 = 0.10, F1,295 = 31.2, P < 0.0001 and (c) r2 = 0.41,
F1,295 = 202.6, P < 0.0001
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significantly lower in the severe category when com-
pared to the moderate and mild/normal categories in
the microbiota and core taxa. Conversely, the oppos-
ite pattern was observed for dominance within the

microbiota and core taxa group, where dominance
was significantly higher in the severe category when
compared to the two other categories, as determined
by Kruskal-Wallis tests and Hedges’ d effect size mea-
sures (Fig. 3b; Table S3 and Figure S1). No significant
relationships between diversity or dominance and dis-
ease category were found in the satellite taxa group.
Permutational multivariate analysis of variance (PER-

MANOVA) tests determined that the compositions of
the microbiota, the core taxa and satellite taxa were
significantly different across the strata of lung disease
(Fig. 3c, Table S4). For the core taxa, within category
similarity notably increased with decreasing lung func-
tion, ranging from a mean Bray-Curtis similarity (±SD)
of 0.29 ± 0.25 in the mild/normal category to 0.75 ±
0.16 in the severe category (Fig. 3c, Table S4). Similarity
of percentages (SIMPER) analysis allowed determination
of which taxa contributed most to the dissimilarity in
microbiota composition across the lung disease categor-
ies (Table 2). From the top six OTUs that contributed
most to the dissimilarity, these included five identified as
recognised CF respiratory pathogens, including P. aeru-
ginosa, S. aureus, B. cepacia complex, S. maltophilia (all
core taxa in all categories) and H. influenzae (satellite
taxon in all categories). Additionally, the second top
taxon was an OTU identified as belonging to the Prevo-
tella genus, putatively labelled as P. melaninogenica. The
remaining taxa within the SIMPER table predominantly
comprised OTUs from the Streptococcus genus or OTUs
from genera consisted of strict anaerobic species, includ-
ing Prevotella, Porphyromonas, Rothia and Veillonella
(Table 2). As a complement to the SIMPER analysis, the
frequency of which taxa dominated patient’s lower air-
way microbiota within and across lung disease categories
was determined (Fig. 4). A clear pattern emerged of in-
creasing dominance by recognised pathogens, which was
mainly driven by the OTU identified as P. aeruginosa, as
lung function decreased (Fig. 4a). Conversely, better lung
function associated with increasing dominance by other
bacterial taxa, especially the putative P. melaninogenica
OTU (Fig. 4b).
Redundancy analysis (RDA) was used to relate the

variability in the composition of the lung microbiota, the
core taxa and satellite taxa to clinical/demographic
factors (outlined in Table 1) and geographical distance
between CF centres. Principal coordinates of neighbour
matrices (PCNM) were calculated from grid coordinates
of the 13 CF centres and used as explanatory spatial var-
iables for RDA. Based on the RDA direct ordination ap-
proach, the microbiota, core taxa and satellite taxa were
significantly correlated with factors listed in Table 3.
Antibiotic exposure and %FEV1 were the most signifi-
cant factors in explaining variance within the microbiota
and core taxa, followed to a lesser extent by patient age
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Fig. 2 Distribution and abundance of bacterial taxa across patients
in worsening lung disease categories. a Mild/normal. b Moderate. c
Severe categories. Given is the percentage number of patient
respiratory samples each bacterial taxon was observed to be
distributed across, plotted against the mean percentage abundance
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the upper quartile of distribution (orange circles), and satellite taxa
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maltophilia, blue diamond; Burkholderia cepacia complex, green
square; Haemophilus influenzae, light blue triangle and
Achromobacter xylosoxidans, black triangle. Distribution-abundance
relationship regression statistics: (a) r2 = 0.64, F1,514 = 927.3, P <
0.0001; (b) r2 = 0.62, F1,581 = 961.9, P < 0.0001; (c) r2 = 0.75, F1,527 =
1549.1, P < 0.0001. Common taxa are listed Table S1
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and region in which a patient’s CF centre was located
(i.e. Europe or USA, Table 1). For the satellite taxa, again
antibiotic exposure was the most significant factor along
with, albeit to a lesser extent, %FEV1 (Table 3). Other
significant clinical/demographic factors included patient

age, patient sex, clinical status, CFTR genotype and
geographic region. Notably, geographical distance be-
tween CF centres was a significant factor only for the
satellite taxa, accounted for by three of six PCNM
vectors.
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Discussion
Chronic infection of the lower airways is undeniably
polymicrobial, e.g. [8–10, 25, 26, 29], and remains the
leading cause of morbidity and mortality for those living
with CF [1–3]. However, current infection surveillance
and infection control approaches in CF remain con-
strained by classical aerobic culture-based diagnostic
microbiology; screening only for the presence or absence
of a limited palette of targeted bacterial species [1, 2].
The unanswered question of how to translate a more
complete understanding of the lower airway microbiota,
which typically consists of bacterial taxa ranging from
strict aerobes to obligate anaerobes, to novel treatment
strategies, is a major reason why microbiome analysis is
not yet employed in the clinical arena.
A pivotal step toward realising the full potential of

microbiota information in the management of lower air-
way infection in CF is to understand the ecology of the
lung microbiome [10, 13, 14], and identify ecological
patterns of microbiota diversity in the disease as it pro-
gresses [15, 16]. Studies that either incorporate large
cross-sectional cohorts from multiple CF centres and
encompassing the high interpatient variability inherent
in CF or in-depth longitudinal studies, which provide in-
creased statistical power and clearer insight for further
investigation, are therefore required. Using the former
approach, we tested and confirmed a significant relation-
ship between decreasing microbiota diversity and re-
duced lung function (Fig. 1). As such, that relationship
can be considered as a generalised ecological pattern of
CF microbiota (Fig. 1). Moreover, the loss of diversity

was accompanied by an increase in dominance, which
would also be a broader expected outcome when com-
munities face environmental perturbations in ecological
studies [27, 28]. When the pattern between lung func-
tion and diversity was observed as part of previous small
cohort/single centre studies, it was characterised in each
instance with low coefficient of determination values [8,
10, 17, 18]. This was also the case in the current study,
and we posit that this results from high interpatient vari-
ability (Fig. 1) [10, 25, 26]. Subsequently, we stratified
patients into lung disease categories, of increasing dis-
ease severity, to investigate further the relationships be-
tween microbiota characteristics and lung function, and
the factors contributing to the variance in the
microbiota.
We have previously established that the categorisation

of microbiota into core and satellite taxa reveals import-
ant aspects of metacommunity species-abundance distri-
butions that would be neglected without such a
distinction [10, 30, 31]. A coherent metacommunity
could be expected to exhibit a direct positive relation-
ship between the prevalence and relative abundance of
individual taxa across constituent communities [28].
Consistent with this prediction, the proportional abun-
dance of bacterial OTUs in each lung disease category
significantly correlated with the number of individual
sample communities those taxa occupied (Fig. 2). Add-
itionally, it should be expected that the core taxa would
account for the majority of relative abundance and the
rarer satellite taxa account for the majority of the diver-
sity within a metacommunity [10, 30, 31]. This was the

Table 2 Similarity of percentage (SIMPER) analysis of microbiota dissimilarity (Bray-Curtis) between lung disease categories

Core taxa in a given lung disease category are highlighted in orange. Also given is within category mean percent abundance for taxa. Percentage contribution is
the mean contribution divided by mean dissimilarity across samples (62.3%). The list of species is not exhaustive, so cumulative percent does not sum to 100%.
Operational taxonomic unit (OTU) identifications have been used for bacterial taxon names. OTU numbers have been used to differentiate between taxa within
the same genus. Given the length of the ribosomal sequences analysed, species identities should be considered putative
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case in the current study, where the core taxa increas-
ingly accounted for greater total relative abundance with
increasing disease severity. Moreover, the high variability
observed in microbiota diversity was reflected in the

satellite taxa, but not in the core, indicating that the
rarer taxa underpinned the observed variance in overall
diversity (Fig. 3a). Conversely, increasing microbiota
dominance patterns were mirrored by the abundant and
prevalent core taxa (Fig. 3b), and core taxa composition
was especially conserved in the severe category when
compared to the other categories (Fig. 3c). In summary,
changes in CF airway microbiota diversity and domin-
ance follow predictions of the ecological theory, and that
composition becomes more conserved with increasing
selective pressure from harsher perturbations [27, 32]. In
a CF context, the selective pressure on microbiota com-
position associated with worsening lung function may
result from increased inflammation and intensified anti-
biotic therapy to treat chronic infection and recurrent
exacerbations [22–24].
In general, it is understood that the common and

prevalent core taxa contribute significantly to ecosys-
tem function, carrying out the majority of functional
activity, while the rare and infrequent satellite taxa
can represent the influence of immigration and seed-
bank of diversity that can thrive and dominate when
conditions change [10, 33]. If we consider bacterial
pathogenesis as an ecological, albeit undesirable, func-
tion within the CF lung microbiome, then one would
predict that recognised CF pathogens would be mem-
bers of the abundant and prevalent core taxa, would
contribute heavily to microbiota compositional simi-
larity and would dominate the lung microbiota of
many individual patients.
We found that this was not universally the case across

our study group (Fig. 2 and Table S1). Derived from
presence/absence culture screening data, P. aeruginosa
and S. aureus are reported and recognised as dominant
pathogens of concern in CF based on their prevalence
[1, 34]. That was reflected here in terms of both the
prevalence and relative abundance of the corresponding
OTUs for those pathogens (Fig. 2 and Table S1). Con-
versely, B. cepacia complex, S. maltophilia, A. xylosoxi-
dan, and Haemophilus influenzae are reported as being
less prevalent, with culture positive reporting in < 20%
of USA CF patients [1]. Here, OTUs identified as those
pathogens all had greater prevalences than culture-based
data, with B. cepacia complex and S. maltophilia found
to be core taxa (Fig. 2 and Table S1). A probable reason
for the higher prevalences is the increased sensitivity in-
herent in molecular-based approaches when compared
to culture-based methods [7]. SIMPER analysis revealed
that all recognised pathogen OTUs, with the exception
of A. xylosoxidans, contributed substantially to the dis-
similarity between lung disease categories (Table 2). In
addition, the lung microbiota of individual patients be-
came increasingly dominated by recognised pathogen
OTUs, and especially by the P. aeruginosa OTU, in
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taxon is defined as the most abundant taxon by relative abundance
within a given lung microbiota sample
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concert with decreasing lung function (Fig. 4). Again, A.
xylosoxidans stood as an exception to this rule. Our
findings, therefore, bring into question the perceived im-
portance of this species in CF.
Conversely, other bacteria, but especially OTUs

identified as belonging to genera comprised of obligate
anaerobes, were observed to increasingly dominate
microbiota of patients with better lung function (Fig. 4).
Taxa belonging to the genera of Prevotella, Porphyromo-
nas,and Veillonella, as observed here, have been previ-
ously associated with better clinical outcomes when they
dominate lung microbiota [35]. Although defective muco-
ciliary clearance in CF make it difficult to eradicate patho-
genic bacteria, it might be possible to mitigate the effects
of resident pathogens by promoting growth of bacterial
taxa whose dominance is associated with better outcomes
[11]. Reproducible infection models, such as CF specific
air liquid interface cell cultures, might be used to identify
paradigms to manage microbiota community structure
[36]. Further, combining these paradigms with longitu-
dinal patient studies might elucidate the underlying mech-
anisms that govern microbial diversity and dominance in

the CF lung, and the role played by intensive antibiotic ad-
ministration in the context of advancing lung disease [11].
While we established unambiguous relationships be-

tween lung microbiota characteristics (diversity, domin-
ance and composition) and lung function, other clinical
factors appear to contribute to the observed high inter-
patient variation. In particular, antibiotic exposure
significantly explained variation in the composition of
the microbiota and the core and satellite taxa groups
(Table 3). This is unsurprising as most CF patients are
throughout their lives frequently on some form of anti-
biotic treatment, ranging from eradication to chronic
suppressive therapies [3, 34]. Here, all of the specific
antibiotics that were significant in explaining variation in
microbiota composition are administered to target
specific recognised pathogens [34].
To a lesser extent, patient age and region (Europe or

USA) also explained microbiota variance across the core
and satellite taxa, and the whole microbiota (Table 3).
Age has previously been found to weakly associate with
microbiota characteristics, with fluctuations in diversity
mainly happening in childhood [25, 26]. With regard to

Table 3 Redundancy analyses for determination of percent variation in the lung microbiota, core taxa and satellite taxa explained
by significant clinical and geographical distance variables between centres

Microbiota Core taxa Satellite taxa

Var. Exp (%) pseudo-F P (adj) Var. Exp (%) pseudo-F P (adj) Var. Exp (%) pseudo-F P (adj)

Age 2.2 3.6 0.046 2.4 4 0.021 1.4 2.1 0.008

Antibiotics

Aztreonam 1.4 2.1 0.013

Ceftazidime 1.4 2 0.008

Colistin 2.2 3.6 0.036 2.2 3.2 0.042 1.2 1.8 0.008

Flucloxacillin 2.4 3.7 0.042 5.4 8.2 0.016 1.2 1.8 0.007

Meropenem 4.4 6.6 0.028 2.4 3.6 0.033 2.4 3.5 0.021

Tobramycin 1.8 2.9 0.040 2.2 3.2 0.032 1.2 1.9 0.007

Clinical status 1 1.4 0.022

%FEV1 10.2 16.3 0.037 10.4 17.1 0.027 2.5 3 0.014

CFTR genotype 1 1.6 0.007

Sex 1.2 1.9 0.025

Region 1.8 3 0.049 2 3.3 0.041 1.4 2.1 0.009

Distance

PCNM1 1.4 2.1 0.006

PCNM3 1 1.4 0.036

PCNM5 1.4 2.1 0.006

Clinical 25.0 27.0 17.3

Distance 3.8

Total 25.0 27.0 21.1

Principle coordinates neighbour matrices (PCNM) were used as potential explanatory values of distance between CF centres. Var. Exp (%) the percentage of
microbiota variation explained by a parameter given the redundancy analysis. P(adj) adjusted significance value following false discovery rate correction. Clinical
status is stable or in treatment for acute pulmonary exacerbation
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region, a possible explanation for the effect could relate
to patient characteristics, which can vary according to
country of treatment [37]. However, biogeographical in-
fluences may also be at play, with the local environment
acting as a source of immigration for bacterial taxa
found in a patient’s lower airways [37, 38]. Here we
tested whether the geographical distance between par-
ticipating CF centres significantly correlated with micro-
biota composition (Table 3). This questioned the
biogeographical assumption that patients attending cen-
tres that are closer together have more similar micro-
biota than those that are further apart [38]. We found
that this was not the case for the core taxa, but did sig-
nificantly explain variation in the satellite taxa group
which, as noted earlier, represents the influence of immi-
gration in a community [33]. Interestingly, clinical sta-
tus, defined as whether a patient was receiving treatment
for pulmonary exacerbation or was judged clinically
stable, was a significant factor for explaining variation in
the satellite taxa but not the core taxa (or microbiota).
This agrees with our previous work, which revealed core
and satellite group compositions were resistant and re-
silient, respectively, to pulmonary exacerbation and anti-
biotics interventions [30]. Though not incorporated in
the current study, measures of inflammatory markers
and immune response could certainly account for vari-
ation within the infection microbiota and should be inte-
grated into future studies of host-microbiota interactions
in CF [35].

Conclusions
Establishing how best to utilise microbiota information
in CF infection management offers great promise to fur-
ther improve the lives of people living with CF. Translat-
ing the complexity of the lower airway microbiota into
simplified yet clinically interpretable ecological metrics
is a pragmatic way forward. Our findings, from a cohort
of CF patients spanning a wide spectrum of lung disease
and from different geographic regions indicate that
microbiota diversity and dominance (as well as the iden-
tity of the dominant bacterial species), in combination
with lung function measures (%FEV1), can be used as in-
formative indicators of disease state. A recent study that
focused on early end-stage lung disease (eESLD) in CF
supports this view [39]; where eESLD patients were
more likely to have low microbiota diversity dominated
by specific recognised pathogens, including P. aerugi-
nosa. More broadly, and given the high interpatient vari-
ability inherent in CF and found in this study, we
recommend that microbiota sampling become part of
routine microbial surveillance in the same manner that
culture-based approaches are currently employed. This
longitudinal surveillance of individual patients in a given
CF centre would refine monitoring of changes in

microbiota characteristics and lung function, and poten-
tially improve personalised treatment of the disease.

Methods
Study design and subjects
Spontaneously expectorated sputum samples were pro-
vided from 299 adolescent to adult individuals with CF
(one sample per patient), representing a broad cross-
section CF respiratory disease, attending 13 CF centres
in Europe and the USA (Table 1). The study was ap-
proved by either local research ethics committee (UK) or
institutional review board (USA) (see Ethics approval
and consent to participate section below). Each centre
collected demographic and medical data on participating
patients, including information on age, lung function,
antibiotic use and other data (summarised in Table 1).
All samples were stabilised at – 80 °C within 12 h of
collection and freeze-thawing of samples kept within 3
cycles, to reduce introduction of bias as previously
described [40, 41]. Two samples (COL0003 and
COL0005) were excluded from the main analyses due to
missing metadata, including %FEV1. Metadata is avail-
able at figshare.com under https://doi.org/10.6084/m9.
figshare.9848513.v1.

Targeted amplicon sequencing
Sputum samples were washed three times with 1X
phosphate-buffered saline to remove saliva, to reduce
potential bias from upper airway microbiota, as previ-
ously described [42]. DNA from dead or damaged cells,
as well as extracellular DNA (which could bias final
sequence analysis) was excluded from analysis via cross-
linking with propidium monoazide prior to DNA extrac-
tion, as previously described [43]. Approximately 50 ng
of template DNA was amplified using Q5® high-fidelity
DNA polymerase (New England Biolabs, Hitchin, UK),
each with a unique dual-index barcode primer combin-
ation [44]. Individual PCR reactions employed 25 cycles
of an initial 30 s, 98 °C denaturation step, followed by
annealing phase for 30 s at 50 °C and final extension step
lasting 60 s at 72 °C. Primers were based upon the uni-
versal primer sequence 27F and 338R [44]. An ampli-
con library consisting of ~ 300 bp amplicons spanning
the V1-V2 hypervariable regions of the 16S rRNA gene
was sequenced on the Illumina MiSeq platform using
V3 chemistry at the Wellcome Sanger Institute,
Cambridgeshire, UK. Mock communities, DNA extract
and PCR negative controls were included in each
sequencing run [45].

Sequence analysis
Sequenced paired-end reads were joined using PEAR
[46], quality filtered using FASTX tools (http://hannon-
lab.cshl.edu). Chimeras were identified and removed

Cuthbertson et al. Microbiome            (2020) 8:45 Page 10 of 13

http://figshare.com
https://doi.org/10.6084/m9.figshare.9848513.v1
https://doi.org/10.6084/m9.figshare.9848513.v1
http://hannonlab.cshl.edu
http://hannonlab.cshl.edu


with VSEARCH_UCHIME_REF [47] using Greengenes
Release 13_5 [48]. Singletons were removed and the
resulting sequences were clustered into operational taxo-
nomic units (OTUs) at 97% sequence identity using
VSEARCH_CLUSTER_FAST. Representative sequences
were taxonomically assigned by RDP Classifier with the
bootstrap threshold of 0.8 or greater using Greengenes
Release 13_5 as a reference [48]. The raw sequence data
reported in this study have been deposited in the
European Nucleotide Archive under study accession
number PRJEB30646. From the 297 samples used, a total
of 5,752,628 bacterial sequence reads (mean ± standard
deviation per sample, 19,240 ± 17,233) were included in
the final analysis, identifying 598 distinct bacterial OTUs
to genus/species level. Given the length of the ribosomal
sequences analysed, these identities should be consid-
ered putative.

Statistical analysis
Regression analysis, coefficients of determination (r2),
degrees of freedom (df), F-statistic and significance (P)
were calculated using XLSTAT v2018.1 (Addinsoft,
Paris, France). Fisher’s alpha index of diversity was cal-
culated in PAST v3.20 (http://folk.uio.no/ohammer/
past). This measure of diversity is relatively unaffected
by variation in sample size, and completely independent
if sequence reads per sample > 1000 [28]. The Berger-
Parker index of dominance was calculated in PAST. This
index is a measure of the numerical importance of the
most abundant taxon in a given microbiota sample [28].
Recognised CF pathogens were those defined in the

CF Foundation Patient Registry reporting [1]. Patients
samples were stratified into lung disease categories
following %FEV1 predicted classifications used in the
CF Foundation Patient Registry reporting (mild/nor-
mal, %FEV1 ≥ 70%; moderate, 40–69% and severe, <
40%) [1]. Within each lung disease category, bacterial
taxa were partitioned into core and satellite taxa
groups, as previously described [31]. Based on a sig-
nificant positive distribution-abundance relationship,
the prevalent and abundant core taxa were defined as
those present in more than 75% of samples, while
taxa falling outside of the upper quartile were consid-
ered as satellite [30, 31].
Significant differences in diversity and dominance be-

tween groups were determined using Kruskal-Wallis ana-
lysis in conjunction with the post hoc Dunn test, and
performed in XLSTAT. Additionally, effect sizes based on
the comparisons of diversity or dominance were
performed using Hedges’ d effect size measures, as
described previously [43]. Sequence read data was
percentage normalised for subsequent microbiota
compositional-based analyses. The Bray-Curtis quanti-
tative index of similarity was used for measures of

microbiota compositional similarity throughout [28].
Permutational multivariate analysis of variance (PER-
MANOVA) with Bonferroni correction was used to
test for significance in microbiota composition and
performed in PAST. Similarity of percentages (SIM-
PER) analysis, to determine which taxa contributed
most to compositional differences between groups, was
performed in PAST. Direct ordination, by means of re-
dundancy analysis (RDA), was used to relate variability
in microbiota composition to clinical and demographic
factors (Table 1) and geographical distance between
CF centres. Principle coordinates of neighbour matri-
ces (PCNM) were used as explanatory spatial variables
[38] and were calculated from grid coordinates of the
sites using GUSTA ME [49]. RDA was performed in
CANOCO v5 [50]. Clinical/demographic variables and
PCNM that significantly explained variation were de-
termined with forward selection (999 Monte Carlo per-
mutations with false discovery rate) and used in RDA
[51]. Partial RDA was performed when both PCNM
and clinical/demographic factors were significant to
summarise the part of the microbiota variation ex-
plained by clinical/demographic factors after control-
ling the effects of geographic distance (PCNM) [51].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00810-3.

Additional file 1: Table S1. Core taxa within each lung disease
category. Given is prevalence, the number of samples a given core taxon
was detected in, and average relative abundance across those samples.
Operational taxonomic unit (OTU) identifications have been used for
bacterial taxon names. OTU numbers have been used to differentiate
between taxa within the same genus. Given the length of the ribosomal
sequences analysed, species identities should be considered putative.

Additional file 2: Table S2. Kruskal-Wallis summary statistics for testing
for significant differences in diversity between lung function categories.
Given for each test is the mean Fisher's alpha diversity index, standard
deviation of the mean, H-statistic, and significance (P), and mean of ranks
values. Asterisks denote significant differences in diversity following
Kruskal-Wallis with post-hoc Dunn test.

Additional file 3: Table S3. Kruskal-Wallis summary statistics for testing
for significant differences in diversity between lung function categories.
Given for each test is the mean Berger-Parker index of dominance, stand-
ard deviation of the mean, H-statistic, and significance (P), and mean of
ranks values. Asterisks denote significant differences in diversity following
Kruskal-Wallis with post-hoc Dunn test.

Additional file 4: Figure S1. Measures of Hedges’ d effect size based
on comparisons of (A) diversity and (B) dominance in the microbiota,
core taxa, and satellite taxa, when stratified into lung disease categories.
Columns represent the effect size and error bars represent the standard
error of effect size. Standard error bars that cross zero indicate no
significant effect on diversity or dominance between lung disease
categories. In each instance, within (A) positive effect sizes represent
higher diversity in the second of the two lung disease categories being
compared. Within (B) negative effect sizes represent lower dominance in
the 2nd of the two lung disease categories being compared. Measures of
diversity and dominance when stratified by lung disease category are
presented in Fig. 3a and b, respectively.
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Additional file 5: Table S4. PERMANOVA summary statistics from
testing for significant differences in microbiota composition between
lung function categories. Given in each instance are mean Bray-Curtis
similarity within and between categories (± standard deviation of the
mean), F-statistic, and significance (P). Asterisks denote significant differ-
ences in composition following one-way PERMANOVA tests with Bonfer-
roni correction.
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