35 research outputs found

    Patterns of scuba diver behaviour to assess environmental impact on marine benthic communities: a suitable tool for management of recreational diving on Benidorm island (Western Mediterranean sea)

    Get PDF
    Few studies have analyzed the SCUBA divers’ behaviour in the Mediterranean Sea and none of them involved marine unprotected areas. Generally speaking the damage done by individuals is quite low, but the, accumulative effects of these disturbances can cause significant localised destruction of benthic marine organisms. The present study was carried out during the year 2005 on a diving site called La Llosa, on Benidorm Island (Alicante: Western Mediterranean Sea) with more than 7,000 dives per year. Two hundred and seventeen (217) divers were monitored randomly. Each subject was observed underwater for 10 minutes (Rouphael & Inglis, 2001). Samples were randomly collected during the high diving season (June-October). Divers were not aware of this surveillance so as not to interfere with their normal patterns of behaviour. The results showed that 95% of divers came into physical contact with benthic substrata during the 10-min observation period. Fin contact rates were significantly different depending on the diving certification level (Man-Whitney test, p<0.003) detecting the greatest number of contacts within higher diving certification levels (Bonferroni correction). Divers using an underwater light device came intocontact with the substratum significantly more frequently than non-light users (X2, p < 0.022). However, contact rate did not show significant variance across divers using a camera and those who did not (p<0.366). No difference was found between contact rates of divers who were given a briefing and those who were not. Environmental briefing before diving had no effect on the divers’ hand contact rates (X2, p<0.194), which shows a low marine environmental sensitivity level of divers. We concluded that the decrease in scuba divers contact rate would take place given an improvement of environmental awareness, specially among professional divers.Pocos estudios han analizado el comportamiento de los buceadores en el mar Mediterráneo y ninguno se ha centrado en las áreas marinas protegidas. El daño hecho por los buceadores suele ser bajo, pero los efectos acumulados, pueden ser importantes, aunque localizados. Este estudio se llevó a cabo durante el 2005 en una zona de buceo llamada La Llosa, cerca de Benidorm (Alicante, Mediterráneo occidental), con más de 7.000 inmersiones al año. La muestra aleatoria de buceadores llegó al tamaño 217. Se observó a cada buceador durante 10 minutos (Rouphael & Inglis, 2001), en la temporada alta (junio-octubre), de manera que los buceadores no supieran que eran vigilados, para no interferir en su comportamiento habitual. Los resultados mostraron que el 95% de los buceadores entran en contacto físico con los sustratos bentónicos durante el período de observación de 10 min. Las tasas de contacto fueron significativamente diferentes en función del nivel de certificación de buceo (Man-Whitney, p <0,003) detectándose mayor número de contactos en los niveles más altos de certificación de buceo (corrección de Bonferroni). Los buzos que utilizan linterna tuvieron un mayor número de contactos con el sustrato que los que no la usaron (X2, p < 0,022). Pero, no hubo diferentas significativas, entre los que llevaron cámara y no la llevaron (p < 0.366). Tampoco las hubo entre los buzos a los que se dio una conferencia previa a la inmersión y a los que no. La conferencia previa sobre medio ambiente no tuvo efecto sobre el número de contactos con las manos (X2, p < 0,194), lo que demuestra un bajo nivel de sensibilidad de los buceadores ante el medio ambiente marino. Se concluye que la disminución de la tasa de contacto de los buceadores se podría conseguir mejorando su conciencia medioambiental, especialmente la de los buceadores profesionales.Ciencias del Ma

    Scope for growth and dietary needs of Mediteranean Pinnids maintained in captivity

    Get PDF
    Abstract Background: The measurement of the energy available for growth (scope of growth, SFG) can be used in bivalves to make a long-term prediction in a short-term experiment of the condition of the individual. In order to tackle the best conditions for captive maintenance of Mediterranean Pinnids, a SFG study was conducted using Pinna rudis as a model species. Three diets were examined to test the viability of live microalgae and commercial products: i) a control diet using 100% of live microalgae based on the species Isochrysis galbana (t-ISO), ii) a 100% of commercial microalgae diet based on the product Shellfish Diet 1800®, and iii) a 50/50% mix diet of I. galbana (t-ISO) and Shellfish Diet 1800®. Results: SFG results showed significant differences among diets in the physiological functions measured and suggested lower acceptability and digestibility of the commercial product. Negative SFG values were obtained for the commercial diet which indicates that it should be rejected for both Pinnid maintenance. The mixed diet showed improved physiological performance compared to the commercial diet, resulting in a higher SFG that had no significant differences with the control diet. However, in the long-term, the lower digestibility of the mixed diet compared to the control diet could lead to a deterioration of individuals’ conditions and should be considered cautiously. Conclusions: This work represents the first case study of SFG in Pinna spp. and provides fundamental data on dietary needs for the critically endangered species, P. nobilis.En prens

    Vertical Configuration of a Side Scan Sonar for the Monitoring of Posidonia oceanica Meadows

    Full text link
    [EN] Posidonia oceanica meadows are ecosystem engineers that play several roles in marine environment maintenance. In this sense, monitoring of the spatial distribution and health status of their meadows is key to make decisions about protecting them against their degradation. With the aim of checking the ability of a simple low-cost acoustic method to acquire information about the state of P. oceanica meadows as ecosystem indicators, ground-truthing and acoustic data were acquired over several of these meadows on the Levantine coast of Spain. A 200 kHz side scan sonar in a vertical configuration was used to automatically estimate shoot density, canopy height and cover of the meadows. The wide athwartship angle of the transducer together with its low cost and user friendliness entail the main advantages of this system and configuration: both improved beam path and detection invariance against boat rolling. The results show that canopy height can be measured acoustically. Furthermore, the accumulated intensity of the echoes from P. oceanica in the first 30 centimeters above the bottom is indirectly related to shoot density and cover, showing a relation that should be studied deeply.Funding for open access charge: Universitat Politècnica de ValènciaLlorens-Escrich, S.; Tamarit, E.; Hernandis, S.; Sánchez-Carnero, N.; Rodilla, M.; Pérez Arjona, I.; Moszynski, M.... (2021). Vertical Configuration of a Side Scan Sonar for the Monitoring of Posidonia oceanica Meadows. Journal of Marine Science and Engineering. 9(12):1-15. https://doi.org/10.3390/jmse912133211591

    A widespread picornavirus affects the hemocytes of the noble pen shell (Pinna nobilis), leading to its immunosuppression

    Get PDF
    IntroductionThe widespread mass mortality of the noble pen shell (Pinna nobilis) has occurred in several Mediterranean countries in the past 7 years. Single-stranded RNA viruses affecting immune cells and leading to immune dysfunction have been widely reported in human and animal species. Here, we present data linking P. nobilis mass mortality events (MMEs) to hemocyte picornavirus (PV) infection. This study was performed on specimens from wild and captive populations.MethodsWe sampled P. nobilis from two regions of Spain [Catalonia (24 animals) and Murcia (four animals)] and one region in Italy [Venice (6 animals)]. Each of them were analyzed using transmission electron microscopy (TEM) to describe the morphology and self-assembly of virions. Illumina sequencing coupled to qPCR was performed to describe the identified virus and part of its genome.Results and discussionIn 100% of our samples, ultrastructure revealed the presence of a virus (20 nm diameter) capable of replicating within granulocytes and hyalinocytes, leading to the accumulation of complex vesicles of different dimensions within the cytoplasm. As the PV infection progressed, dead hemocytes, infectious exosomes, and budding of extracellular vesicles were visible, along with endocytic vesicles entering other cells. The THC (total hemocyte count) values observed in both captive (eight animals) (3.5 × 104–1.60 × 105 ml−1 cells) and wild animals (14 samples) (1.90–2.42 × 105 ml−1 cells) were lower than those reported before MMEs. Sequencing of P. nobilis (six animals) hemocyte cDNA libraries revealed the presence of two main sequences of Picornavirales, family Marnaviridae. The highest number of reads belonged to animals that exhibited active replication phases and abundant viral particles from transmission electron microscopy (TEM) observations. These sequences correspond to the genus Sogarnavirus—a picornavirus identified in the marine diatom Chaetoceros tenuissimus (named C. tenuissimus RNA virus type II). Real-time PCR performed on the two most abundant RNA viruses previously identified by in silico analysis revealed positive results only for sequences similar to the C. tenuissimus RNA virus. These results may not conclusively identify picornavirus in noble pen shell hemocytes; therefore, further study is required. Our findings suggest that picornavirus infection likely causes immunosuppression, making individuals prone to opportunistic infections, which is a potential cause for the MMEs observed in the Mediterranean

    The characterization of toll-like receptor repertoire in Pinna nobilis after mass mortality events suggests adaptive introgression

    Get PDF
    The fan mussel Pinna nobilis is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite Haplosporidium pinnae, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast-evolving immune genes, of which toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across P. nobilis, Pinna rudis and P. nobilis × P. rudis hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite H. pinnae. We report a high genetic diversity, mainly observed at cell surface TLRs compared with that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio, was interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the P. nobilis identified as resistant to H. pinnae were introgressed with P. rudis TLR. Specifically, they all carried a TLR-7 of P. rudis origin, whereas sensitive P. nobilis were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single-nucleotide polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the P. nobilis species after MME and additional insights into adaptation to H. pinnae that should contribute to the conservation of this Mediterranean endemic species.This work was supported by the University of Toulon and Toulon Provence Méditerranée (TPM) related to the PINORES project, the University Institute of Technology of the University of Toulon under the grant ‘CARTT’ and by the European Union's LIFE programme through the project LIFE PINNARCA (NAT/ES/001265). Fabio Scarpa, Marco Casu and Daria Sanna acknowledge the support of NBFC to the University of Sassari, funded by the Italian Ministry of University and Research, PNRR, Missione 4, Componente 2, ‘Dalla ricerca all'impresa’, Investimento 1.4 Project CN00000033.Peer reviewe

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.En prens

    Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens

    Get PDF
    A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens’ data to address the fast- and vast-dispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 °C and to a salinity range between 36.5–39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play.info:eu-repo/semantics/publishedVersio

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    20 Pág.A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.This work was funded by: DG Pesca i Medi Mari (GOIB),EsMarEs (order IEO by MITECO, Spanish government), Life UFE IP-PAF INTEMARES (LIFE15 IPE ES 012) “Gestión integrada, innovadora y participativa de la Red Natura 2000 en el medio marino español,” the research project “Estado de conservación del bivalvo amenazado Pinna nobilis en el PNAC” (OAPN 024/2010), the project RECONNECT (MIS 5017160) of the Programme Interreg V-B “Balkan-Mediterranean 2014–2020.” MTES (French Government), DREAL (Direction Régionale Environnement Aménagement Logement) and Région Occitanie (France) for funding research and monitoring of Pinna.GC and PP were contracted under the INIA-CCAA cooperative research programme for postdoctoral incorporation from the Spanish National Institute for Agricultural and Food Research and Technology (INIA) (DOC INIA 8/2013 and 15/2015). MV-L was supported by a Juan de la Cierva-Incorporación postdoctoral contract (ICJI-2016-29329, MICIU Programme). ML-S and EÁ were supported by a Personal Técnico de Apoyo contract MINECO programme (PTA2015-11709-I and PTA2015-10829- I, respectively). CP and GS were supported by the project RECONNECT (MIS 5017160) financed by the Transnational Cooperation Programme Interreg V-B “Balkan-Mediterranean 2014–2020” and co-funded by the European Union and national funds of the participating countries. CP was supported by Sorbonne University.Peer reviewe
    corecore