976 research outputs found

    Combining Phylogeography with Distribution Modeling: Multiple Pleistocene Range Expansions in a Parthenogenetic Gecko from the Australian Arid Zone

    Get PDF
    Phylogenetic and geographic evidence suggest that many parthenogenetic organisms have evolved recently and have spread rapidly. These patterns play a critical role in our understanding of the relative merits of sexual versus asexual reproductive modes, yet their interpretation is often hampered by a lack of detail. Here we present a detailed phylogeographic study of a vertebrate parthenogen, the Australian gecko Heteronotia binoei, in combination with statistical and biophysical modeling of its distribution during the last glacial maximum. Parthenogenetic H. binoei occur in the Australian arid zone and have the widest range of any known vertebrate parthenogen. They are broadly sympatric with their sexual counterparts, from which they arose via hybridization. We have applied nested clade phylogeographic, effective migration, and mismatch distribution analyses to mitochondrial DNA (mtDNA) sequences obtained for 319 individuals sampled throughout the known geographic ranges of two parthenogenetic mitochondrial lineages. These analyses provide strong evidence for past range expansion events from west to east across the arid zone, and for continuing eastward range expansion. Parthenogen formation and range expansion events date to the late Pleistocene, with one lineage expanding from the northwest of its present range around 240,000 years ago and the second lineage expanding from the far west around 70,000 years ago. Statistical and biophysical distribution models support these inferences of recent range expansion, with suitable climatic conditions during the last glacial maximum most likely limited to parts of the arid zone north and west of much of the current ranges of these lineages. Combination of phylogeographic analyses and distribution modeling allowed considerably stronger inferences of the history of this complex than either would in isolation, illustrating the power of combining complementary analytical approaches

    Postpandemic rebound of adeno-associated virus type 2 (AAV2) infections temporally associated with an outbreak of unexplained severe acute hepatitis in children in the United Kingdom

    Get PDF
    Over 1000 cases of unexplained severe acute hepatitis in children have been reported to date worldwide. An association with adeno-associated virus type 2 (AAV2) infection, a human parvovirus, prompted us to investigate the epidemiology of AAV in the United Kingdom. Three hundred pediatric respiratory samples collected before (April 03, 2009–April 03, 2013) and during (April 03, 2022) the COVID-19 pandemic were obtained. Wastewater samples were collected from 50 locations in London (August 2021–March 2022). Samples were tested for AAV using real-time polymerase chain reaction followed by sequencing. Selected adenovirus (AdV)-positive samples were also sequenced. The detection frequency of AAV2 was a sevenfold higher in 2022 samples compared with 2009–2013 samples (10% vs. 1.4%) and highest in AdV-positive samples compared with negatives (10/37, 27% vs. 5/94, 5.3%, respectively). AAV2-positive samples displayed high genetic diversity. AAV2 sequences were either very low or absent in wastewater collected in 2021 but increased in January 2022 and peaked in March 2022. AAV2 was detected in children in association with AdV of species C, with a highest frequency in 2022. Our findings are consistent with the expansion of the population of children unexposed to AAV2, leading to greater spread of the virus once distancing restrictions were lifted

    The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics

    Get PDF
    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently

    Landscape resistance affects individual habitat selection but not genetic relatedness in a reintroduced desert ungulate

    Get PDF
    The long-term success of species reintroductions is strongly dependent on the availability of large areas of suitable habitat and the genetic make-up of the population. If available habitat is poorly connected this can hinder gene flow and lead to genetic fragmentation of the population, potentially increasing its extinction risk. We employed a conservation genomics approach in which we combined analyses of genetic structure with testing for potential landscape effects on habitat selection and gene flow in reintroduced Asiatic wild ass Equus hemionus ssp. in the Israeli Negev desert. Genetic structure and pairwise relatedness were first investigated followed by examination of landscape effects on individual habitat selection using records of GPS collared individuals. We then built habitat resistance surfaces and used electrical circuit theory to test for landscape effects on genetic relatedness. We detected weak genetic structuring, yet low spatial coherence among individuals from the same genetic cluster. Landscape variables had a significant impact on individual habitat selection, with wild ass avoiding steep slopes and habitats of low suitability as predicted by a species distribution model. However, the landscape genetic analysis revealed no effect of habitat resistance on genetic relatedness. These results suggest that gene flow in the reintroduced population is not impacted by landscape resistance. Indeed, the high mobility of the species may increase its resistance to the genetic effects of habitat fragmentation, at least over a small number of generations. We discuss other potential causes for the observed genetic structure including a behavioural effect. Our study highlights the importance of understanding species-habitat interactions for the long-term success of reintroductions

    A Comparison of Phylogenetic Network Methods Using Computer Simulation

    Get PDF
    Background: We present a series of simulation studies that explore the relative performance of several phylogenetic network approaches (statistical parsimony, split decomposition, union of maximum parsimony trees, neighbor-net, simulated history recombination upper bound, median-joining, reduced median joining and minimum spanning network) compared to standard tree approaches, (neighbor-joining and maximum parsimony) in the presence and absence of recombination. Principal Findings: In the absence of recombination, all methods recovered the correct topology and branch lengths nearly all of the time when the substitution rate was low, except for minimum spanning networks, which did considerably worse. At a higher substitution rate, maximum parsimony and union of maximum parsimony trees were the most accurate. With recombination, the ability to infer the correct topology was halved for all methods and no method could accurately estimate branch lengths. Conclusions: Our results highlight the need for more accurate phylogenetic network methods and the importance of detecting and accounting for recombination in phylogenetic studies. Furthermore, we provide useful information for choosing a network algorithm and a framework in which to evaluate improvements to existing methods and nove
    • …
    corecore