3 research outputs found

    Electroencephalographic delta/alpha frequency activity differentiates psychotic disorders: a study of schizophrenia, bipolar disorder, and methamphetamine-induced psychotic disorder

    No full text
    Electroencephalography (EEG) has been proposed as a neurophysiological biomarker to delineate psychotic disorders. It is known that increased delta and decreased alpha, which are apparent in psychosis, are indicative of inappropriate arousal state, which leads to reduced ability to attend to relevant information. On this premise, we investigated delta/alpha frequency activity, as this ratio of frequency activity may serve as an effective neurophysiological biomarker. The current study investigated differences in delta/alpha frequency activity, in schizophrenia (SCZ), bipolar I disorder with psychotic features and methamphetamine-induced psychosis. One hundred and nine participants, including individuals with SCZ (n = 28), bipolar I disorder with psychotic features (n = 28), methamphetamine-induced psychotic disorder (MPD) (n = 24) and healthy controls (CON, n = 29). Diagnosis was ascertained with the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th Edition disorders and current medication was recorded. EEG was undertaken in three testing conditions: resting eyes open, resting eyes closed and during completion of a simple cognitive task (visual continuous performance task). EEG delta/alpha frequency activity was investigated across these conditions. First, delta/alpha frequency activity during resting eyes closed was higher in SCZ and MPD globally, when compared to CON, then lower for bipolar disorder (BPD) than MPD for right hemisphere. Second, delta/alpha frequency activity during resting eyes open was higher in SCZ, BPD and MPD for all electrodes, except left frontal, when compared to CON. Third, delta/alpha frequency activity during the cognitive task was higher in BPD and MPD for all electrodes, except left frontal, when compared to CON. Assessment of EEG delta/alpha frequency activity supports the delineation of underlying neurophysiological mechanisms present in psychotic disorders, which are likely related to dysfunctional thalamo-cortical connectivity. Delta/alpha frequency activity may provide a useful neurophysiological biomarker to delineate psychotic disorders

    Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium

    No full text

    Reproducibility in the absence of selective reporting: An illustration from large‐scale brain asymmetry research

    Get PDF
    The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
    corecore