5 research outputs found

    Combination of Loop-Mediated Isothermal Amplification and AuNP-Oligoprobe Colourimetric Assay for Pork Authentication in Processed Meat Products

    Get PDF
    Pork adulteration is a major concern for Muslims and Jews whose diets are restricted by religious beliefs, as well as those who are allergic to pork meat and its derivatives. Accurate pork authentication is of great importance to assist this demographic group of people in making decision on their product purchase. The aim of this study was to develop a new analytical method for pork authentication in processed meat products based on a combination of loop-mediated isothermal amplification (LAMP) and AuNP-nanoprobe colourimetric assay. The LAMP conditions were first optimised to obtain the highest yield of amplified DNA products within the shortest time. Oligoprobe-functionalised AuNPs were then hybridised with LAMP-DNA amplicons and subsequently challenged with MgSO4 at a high concentration to induce AuNP aggregation. In the presence of pork DNA, the colloidal AuNP-probe remained unchanged in its red colour, which indicates the dispersion of AuNPs. In contrast, in the absence of pork DNA, the colour was changed to colourless as a result from the aggregation of AuNPs. The LAMP-AuNP-nanoprobe assay offers a high sensitivity with a limit of detection as low as 100 pg of pork DNA. The assay is highly specific to pork content without cross-reactivity with the other meat species tested. The assay developed herein can become a simple, inexpensive, precise, and rapid analytical tool for small laboratories or the general public interested in halal food authentication

    Assessing the accuracy of quantitative molecular microbial profiling

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.The application of high-throughput sequencing in profiling microbial communities is providing an unprecedented ability to investigate microbiomes. Such studies typically apply one of two methods: amplicon sequencing using PCR to target a conserved orthologous sequence (typically the 16S ribosomal RNA gene) or whole (meta)genome sequencing (WGS). Both methods have been used to catalog the microbial taxa present in a sample and quantify their respective abundances. However, a comparison of the inherent precision or bias of the different sequencing approaches has not been performed. We previously developed a metagenomic control material (MCM) to investigate error when performing different sequencing strategies. Amplicon sequencing using four different primer strategies and two 16S rRNA regions was examined (Roche 454 Junior) and compared to WGS (Illumina HiSeq). All sequencing methods generally performed comparably and in good agreement with organism specific digital PCR (dPCR); WGS notably demonstrated very high precision. Where discrepancies between relative abundances occurred they tended to differ by less than twofold. Our findings suggest that when alternative sequencing approaches are used for microbial molecular profiling they can perform with good reproducibility, but care should be taken when comparing small differences between distinct methods. This work provides a foundation for future work comparing relative differences between samples and the impact of extraction methods. We also highlight the value of control materials when conducting microbial profiling studies to benchmark methods and set appropriate thresholds.The authors acknowledge funding from the European Metrology Research Programme joint research project “INFECT MET” (http://infectmet.lgcgroup.com) (an EMRP project, jointly funded by the EMRP participating countries within EURAMET and the European Union) and the UK National Measurement System for funding of this work and for the support of Thomas Laver by the BBSRC Industrial Case Studentship award BB/H016120/1

    Thermoresponsive bacteriophage nanocarrier as a gene delivery vector targeted to the gastrointestinal tract.

    Get PDF
    The use of the gastrointestinal tract as a site for the local delivery of DNA is an exciting prospect. In order to obtain an effective vector capable of delivering a gene of interest to target cells to achieve sufficient and sustained transgene expression, with minimal toxicity, we developed a new generation of filamentous bacteriophage. This particular bacteriophage was genetically engineered to display an arginine-glycine-aspartic acid (RGD) motif (an integrin-binding peptide) on the major coat protein pVIII and carry a mammalian DNA cassette. One unanticipated observation is the thermoresponsive behavior of engineered bacteriophage. This finding has led us to simplify the isolation method to purify bacteriophage particles from cell culture supernatant by low-temperature precipitation. Our results showed that, in contrast to non-surface modified, the RGD-modified bacteriophage was successfully used to deliver a transgene to mammalian cells. Our in vitro model of the human intestinal follicle-associated epithelium also demonstrated that bacteriophage particles were stable in simulated gastrointestinal fluids and able to cross the human intestinal barrier. In addition, we confirmed an adjuvant property of the engineered bacteriophage to induce nitric oxide production by macrophages. In conclusion, our study demonstrated the possibility of using bacteriophage for gene transfer in the gastrointestinal tract

    An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities

    Get PDF
    Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results

    An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities.

    Get PDF
    Funder: Quadram Institute Bioscience BBSRC Strategic Programme: Microbes in the Food Chain; Grant(s): BB/R012504/1) and its constituent projects BBS/E/F/000PR10348 and BBS/E/F/000PR10349Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results
    corecore