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An inter‑laboratory study 
to investigate the impact 
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on microbiome analysis using mock 
communities
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Justin O’Grady11,12, Emma Ransom‑Jones13, Huihai Wu14, Emma Laing14, 
David J. Studholme15, Ernest Diez Benavente16, Jody Phelan16, Taane G. Clark16,17, 
Jacob Moran‑Gilad9 & Jim F. Huggett1,18

Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene 
amplicon sequencing) continue to be valuable for determining the microbial composition of samples. 
Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to 
determine the aetiology of an infection (usually single pathogen identification) or samples from more 
complex niches such as human mucosa or environmental samples where multiple microorganisms 
need to be identified. The methodologies are frequently applied to determine both presence of 
micro‑organisms and their quantity or relative abundance. There are a number of technical steps 
required to perform microbial community profiling, many of which may have appreciable precision and 
bias that impacts final results. In order for these methods to be applied with the greatest accuracy, 
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comparative studies across different laboratories are warranted. In this study we explored the impact 
of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S 
rRNA gene amplicon sequencing results. Data were generated from two mock microbial community 
samples which were amplified using primer sets spanning five different variable regions of 16S rRNA 
genes. The PCR‑sequencing analysis included three technical repeats of the process to determine the 
repeatability of their methods. Thirteen laboratories participated in the study, and each analysed 
the same FASTQ files using their choice of pipeline. This study captured the methods used and the 
resulting sequence annotation and relative abundance output from bioinformatic analyses. Results 
were compared to digital PCR assessment of the absolute abundance of each target representing each 
organism in the mock microbial community samples and also to analyses of shotgun metagenome 
sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone 
can result in different estimations of the composition of the microbiome when using 16S rRNA gene 
amplicon sequencing data. The study observed differences in terms of both presence and abundance 
of organisms and provides a resource for ensuring reproducible pipeline development and application. 
The observed differences were especially prevalent when using custom databases and applying high 
stringency operational taxonomic unit (OTU) cut‑off limits. In order to apply sequencing approaches 
with greater accuracy, the impact of different analytical steps needs to be clearly delineated and 
solutions devised to harmonise microbiome analysis results.

Abbreviations
OTU  Operational taxonomic unit
dPCR  Digital PCR
QIIME  Quantitative insights into microbial ecology
MG-RAST  Metagenomics rapid annotations using subsystems technology
MIxS  Minimum information about any (X) sequence
WGS  Whole genome sequencing
GMI  Global microbial identifier
EMQN  European molecular genetics quality network
EQA  External quality assessment
MCM  Metagenomic control material
gDNA  Genomic DNA
NDMS  Non-metric multidimensional scaling

The analysis of the microbial composition of a sample can be performed using high-throughput sequencing meth-
ods by amplifying and sequencing selected regions of a gene (a metagenetic approach) or whole metagenomic 
DNA. Amplicon sequencing of regions such as the 16S ribosomal RNA gene (16S rRNA) continue to provide 
a simplified approach that is widely applied for bacterial identification and microbial community  profiling1–3 
even though there are newer approaches which involve sequencing of whole metagenomes. This is in part due 
to being an order of magnitude cheaper compared to a shotgun metagenomic approach while also being able to 
cope with the presence of a high background of contaminating (e.g. human) genomic DNA. In addition, targeted 
approaches require less computing power, and are well established, so have more complete, actively maintained 
and extensive databases and highly developed workflows. In this approach, highly conserved regions of the 16S 
rRNA gene are most often chosen as PCR primer binding sites to span variable region(s) that provide sequence 
clustering at the level of Operational Taxonomic Units (OTU). While this strategy is widely used, conserved 
regions of the 16S rRNA gene are not universally conserved across all microbial  taxa4, and this sequence vari-
ability at primer-binding sites causes bias in microbial profiling  experiments5,6. These biases can be further driven 
by the variable amplification efficiencies of different primer sets due to template-primer mismatches which will 
further distort the abundances of certain taxa when observing microbial community  structure7. Conversely, 
shotgun metagenomic sequencing, which does not require sequence-dependent primer annealing, is thought 
to introduce less bias especially if it is prepared without  PCR8.

There are many technical steps required in performing 16S rRNA gene amplicon sequencing experiments 
that can influence the  results9. These include sampling (sampling site, method, sample transport and storage), 
extraction of nucleic acid material, choice of 16S rRNA primer, amplification, library preparation, sequencing 
and bioinformatic analysis pipeline. Previously, we used control materials (i.e., defined mock communities of 
mixed organism nucleic acids) to investigate how different steps in the process impact on the observed  results10,11. 
Other studies have investigated how DNA extraction  methods12–14, sample  storage14, and variable 16S rRNA gene 
copy number can impact observed microbial community  structures15. Hiergeist et al. used an inter-laboratory 
study to evaluate 16S rRNA gene amplicon sequencing of stool  samples16. They concluded that investigators need 
to perform proficiency testing as all steps of the workflow can significantly affect the output of the procedure. 
However, the study did not evaluate the impact of the bioinformatic approach on error in isolation. Other studies 
have used simulated data sets to evaluate the bioinformatics  approach17.

The use of control materials can enable the measurement of technical error. We previously investigated the 
application of a control  material10 to investigate factors including choice of 16S rRNA gene amplicon strategy 
and impact of sequencing depth on whole genome sequencing  data11. In that study, the control materials were 
characterised by absolute quantification of each organism contained in the mixture using a method orthogonal 
to sequencing called digital PCR (dPCR). dPCR is a highly accurate method for absolute quantification of DNA 
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targets in  samples18,19, and can be applied as a primary reference measurement  procedure20. Previous studies have 
demonstrated that the choice of bioinformatic approach for analysis of microbiome sequence data can strongly 
impact the inferred microbial taxa  composition21 and observed taxon relative  abundance22. There are multiple 
decision points in bioinformatics pipelines, including quality filtering method, chimera removal method, 16S 
rRNA database choice, alignment method and assignment of taxonomy methodology. All of these steps can 
be performed by pipeline tools such as QIIME (Quantitative Insights Into Microbial Ecology)23, MG-RAST 
(Metagenomics Rapid Annotations using Subsystems Technology)24,25,  MGnify26 and  mothur27 or these tools 
can be combined with customised pipelines for the analysis of data. In addition to the broad choice of bioin-
formatic approaches, each tool has alterable parameters which affect the outcome. All of these options increase 
analysis variability, so it is important that a comprehensive description of data processing steps is included in 
the methodology. More stringent requirements in data reporting via a guideline system such as the Minimum 
Information about any (X) Sequence (MIxS) requirements for publishing will  help28.

Inter-laboratory studies are a way to determine the reproducibility of methods and this is especially impor-
tant in the field of multi-step advanced sequence analysis. In order to apply these methods with confidence, 
pipelines need to be validated through verification of inter-laboratory agreement using mock communities, as 
demonstrated in our previous  study11. Few studies to date have investigated the reproducibility of results. Prior 
multi-centre studies have focused on next generation sequence based oncology  tests29, detection of complex 
 variants30 and whole genome sequence (WGS) based bacterial  genotyping31. Other studies have looked into 
the benchmarking of 16S rRNA gene amplicon sequencing  data32, investigating the tools for clustering of data 
in microbiome  studies33 and making resources for benchmarking of data publicly  available34. In addition to 
these studies, there are initiatives from the Global Microbial Identifier (GMI) initiative which has performed 
proficiency testing schemes for bacterial  isolates35,36, and the European Molecular Genetics Quality Network 
(EMQN) which runs external quality assessment (EQA) schemes for germline and somatic mutation testing.

In this study, we used an inter-laboratory comparison to investigate the impact of the bioinformatic process-
ing step on the prediction of the composition of control materials (i.e., genomic DNA from mock community 
samples, MCM2α and MCM2β). Raw sequence data, generated from PCR-next-generation amplicon sequenc-
ing of different 16S rRNA gene variable regions, which included technical repeats, were shared with multiple 
laboratories for bioinformatic pipeline comparison.

Methods
Preparation of Metagenomic Control Materials (MCM) MCM2α and MCM2β. The metagenomic 
control material (MCM) 2α and β contained 15 different bacterial and one viral species, representing common 
human pathogens (Table 1). The two materials varied only by one species of Enterococcus but there were also 
subtle differences in the quantity of each organism in the mixture. This design was implemented in order to 
interrogate the ability of the sequencing approaches to identify these subtle differences.

The materials were prepared using genomic DNA (gDNA) sourced from ATCC (LGC Standards) and gDNA 
from E. coli O157, strain EDL 933 from IRMM (Institute for Reference Materials and Measurements). The 

Table 1.  The composition of the MCM2α and MCM2β.

MCMα MCMβ ATCC product code

Staphylococcus aureus (Methicillin sensitive MSSA) MSSA BAA-1718D-5

S. aureus (Methicillin resistant MRSA) – BAA-1556D-5

Staphylococcus epidermidis (Methicillin Resistant MRSE) 35984D-5

Streptococcus pneumoniae (PBP2B) – 700669D-5

S. pneumoniae 33400D-5

Streptococcus pyogenes S. pyogenes 700294D-5

Streptococcus agalactiae S. agalactiae BAA-611D-5

Enterococcus faecalis 700802D-5

– Enterococcus faecium BAA-472D-5

– E. faecium (Vancomycin resistant—VRE) 51559D-5

Pseudomonas aeruginosa P. aeruginosa 47085D-5

Klebsiella pneumoniae K. pneumoniae 700721D-5

Acinetobacter baumannii A .baumannii 17978D-5

Escherichia coli – 700928D-5

– E. coli (O157:H7) IRMM-449

Neisseria meningitidis N. meningitidis 700532D-5

Moraxella catarrhalis M. catarrhalis 25240D-5

Haemophilus influenzae H. influenzae 51907D

Mycobacterium tuberculosis M. tuberculosis 25618D-2

Human Cytomegalovirus hCMV VR-538D

Salmonella enterica S. enterica 700720D-5
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concentration (ng/µL) of each gDNA preparation was determined by observing the mean value using triplicate 
measurements using a Qubit dsDNA BR Assay Kit (ThermoFisher) on the Qubit Fluorometer. The concentra-
tion of each gDNA preparation was also determined using specific assays for each of the organisms (Table 2) in 
the materials using dPCR using methods previously  developed11. dPCR analyses were performed on a Bio-Rad 
QX200 droplet digital PCR system. This value was used when preparing the materials. The materials were diluted 
in TE pH 7.0 buffer and incubated at 4 °C for 4 h on a tube rotator. Aliquots of the materials were prepared in a 
final volume of 25 µL and stored at − 80 °C. Stability of the materials was determined as previously  described11 
using assays ctrA amplifying N. meningitidis and hin from MCM2α, mor and lytA from MCM2β. The material 
composition was determined using microfluidic dPCR as previously  described11 using the assays in Table 2. The 
dMIQE (Minimum Information for publication of Quantitative Digital PCR Experiments) checklist is included 
in Additional File 1.

Amplicon sequencing. Amplicon sequencing was performed using two different primer sets; set one tar-
geting variable regions 1 and 2 (V1–2) and set two targeting variable regions 4, 5 and 6 (V4–6) (Table 3). These 
priming strategies had been previously evaluated as strategy β, employing a combination of forward primers 
and one single primer in order to increase the specificity of the primer set for V1–2, and strategy γ which used 
degenerate bases to amplify the V4–6  regions11.

Amplicons were prepared of both materials, MCM2α and MCM2β, in triplicate using KAPA HiFi mastermix 
(Kapa Biosystems) to generate twelve samples for sequencing. Each reaction consisted of 1 × KAPA HiFi Hotstart 
ReadyMix, 0.3 µM of each primer and each template in a background of 50 ng human gDNA (Promega) in a final 
volume of 25 µL Nuclease Free Water (Ambion). The reactions were performed on a DNA Engine Tetrad 2 with 
the following cycling conditions: enzyme activation at 95 °C for 3 min, 30 cycles of denaturation at 98 °C for 15 s, 
annealing at 72 °C for 15 s and extension at 72 °C for 15 s, a final extension at 72 °C for 5 min and hold at 4 °C. 
Amplicons were visualised to determine product sizing using the Agilent DNA 1000 kit (Agilent Technologies) 
version 2.3 on the Agilent Bioanalyzer 2100 Instrument (Agilent Technologies).

Sequencing of the amplicons was performed. In total 12 libraries were prepared using Illumina TruSeq DNA 
PCR-Free Library Preparation kit processing according to the protocol for 350 bp input size for V1–2 and sepa-
rately processing the V4–6 amplicons according to the 550 bp insert size (Revision D June 2015). Libraries were 
indexed using the Nextera indices (Illumina) and were pooled and quantified using KAPA SYBR FAST qPCR 
Master Mix (2X) Kit (Kapa Biosystems) according to manufacturer’s instructions. Libraries were visualised 
using a High Sensitivity DNA kit (Agilent Technologies) version 1.03 on the Bioanalyzer 2100. The libraries 
were diluted to 2 nM and after denaturing diluted to 10 pM. PhiX was spiked in at 5% using 20 pM library which 
should equate to around 7–10% of total cluster density. DNA sequencing was performed in a single run with an 
Illumina MiSeq platform using MiSeq V3 reagents (600 cycle chemistry), employing paired-end 300 base reads.

Shotgun metagenomic sequencing. Shotgun metagenomic sequencing was performed by LGC Genom-
ics GmbH (Berlin, Germany). Libraries were prepared using 25  ng of DNA from three aliquots of MCM2α 
and MCM2β pools employing an Ovation Rapid DNA Library Preparation Kit (NuGEN). Genomic DNA was 
sheared to an average size of 400 bp using ultrasonication (Covaris S2 model). Libraries were sequenced on 
a NextSeq 500 sequencer (Illumina, San Diego, CA, USA) employing paired end 2 × 150 base sequencing. In 
addition to sequencing of the mixed samples, gDNA from each organism was sequenced as well using the same 
library preparation and sequencing protocols.

Data analysis. Paired end sequence reads generated from the shotgun metagenomic DNA libraries were 
trimmed to remove adapter sequences and bases with quality lower than Phred score 20. Sequences were 
then assembled using  MEGAHIT37. Paired end reads were mapped back to the metagenomics assemblies 
and sequence bins were generated for each sample using  metaBAT238. Taxonomy was assigned to individual 
sequence bins using  kraken39 for each sample. The relative abundance of each organism was then calculated as 
the total metagenome length of each unique taxon in base pairs as a percentage of the total number of base pairs 
sequenced per sample.

Inter‑laboratory study. In total 12 FASTQ data sets were generated from amplicon sequencing consisting 
of triplicate analysis of each material from sample to sequencing result. Laboratories were invited (Additional 
File 2) to participate in the analysis of these files using their standard bioinformatics pipelines for 16S rRNA gene 
amplicon sequence data. If they were in agreement, a link to the data and full description of the study hosted 
on the following URL: http:// patho genseq. lshtm. ac. uk/ mcm. html was provided. They were asked to complete a 
submission form which collected pertinent information, including: (1) who processed the data, (2) the name of 
the laboratory, (3) results as biological observation matrices (BIOMs) based on annotation of OTU97 clusters, 
(4) a description of the analysis to include the command list for the whole bioinformatic process used to produce 
the results (Additional File 3).

Thirteen participating laboratories returned results. The results were collated in MS Excel 2010, and further 
analysis carried out using GraphPad Prism 6. The results from the 16S rRNA gene amplicon sequencing from 
each laboratory had to be normalised to be compared to the dPCR data to take into account that this operon can 
have different copy numbers depending on the genome. Data from each laboratory was compared to the dPCR 
analysis of the materials by calculating fold change. To assess agreement between different analytical methods, 
a cut-off of three-fold difference in relative abundance was applied, as described  previously9.

The FASTQ files have been deposited in the European Nucleotide Archive (PRJEB34919).

http://pathogenseq.lshtm.ac.uk/mcm.html
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Table 2.  List of gene targets and corresponding assays for quantifying materials.

Organism Gene Accession no. Oligonucleotide Name Sequence (5′–3′) Amplicon size (bp) References

A. baumannii ompA KJ363323

ompA_F CAT GGA ACT TCG TGT GAT TCT TTG 

111 O’Sullivan et al. (2014)14ompA_R GCA GTA GCG TTA GGG TAT TCA GAT AAT 

ompA_MGB [6FAM] AAA TCA AAC ATC AAA GAC C [MGB-
NFQ]

E. coli uidA AE014075

uidA_F GCC CGC TTC GAA ACC AAT 

120 O’Sullivan et al. (2014)14uidA_R TCG CAT TAC CCT TAC GCT GAA 

uidA_HP [6FAM] TCC ATG TTC ATC TGC CCA GTC GAG 
C [BHQ1]

E. faecalis groES AF335185

groES_F TTA CTG TGT CAC CAA TTT TTA CTT CCA 

96 O’Sullivan et al. (2014)14groES_R AAC CAC AAA CAG GTG AAG TTA TCG 

groES_HP [6FAM] TGC CAT TTT CAA GCA CAC GAC CTT 
CA [BHQ1]

E. faecium ddl U39790,

ddl_F ACG TAG CAT TCT ATG ATT ATG AAG C

124 Naserpour Farivar et al. 
(2014)43

ddl_R CAT CGT GTA AGC TAA CTT CG

ddl_P [6FAM] CAG ATT CCA GCC GAA GTG CC 
[BHQ1]

H. influenzae hin P26093

Hin_F CCG GGT GCG GTA GAA TTT AATAA 

91 Garcha et al. (2012)44Hin_R CTG ATT TTT CAG TGC TGT CTT TGC 

Hin_HP [6FAM]ACA GCC ACA ACG GTA AAG TGT TCT 
ACG [BHQ1]

K. pneumoniae khe AF293352

Khe_F GAT GAA ACG ACC TGA TTG CATTC 

77 Hartman et al. (2009)45Khe_R CCG GGC TGT CGG GAT AAG 

Khe_HP [6FAM] CGC GAA CTG GAA GGG CCC G 
[BHQ1]

M. catarrhalis mor U69982

Mor_F GTG AGT GCC GCT TTT ACA ACC 

72 Greiner et al. (2003)46Mor_R TGT ATC GCC TGC CAA GAC AA

Mor_HP [6FAM] TGC TTT TGC AGC TGT TAG CCA GCC 
TAA [BHQ1]

M. tuberculosis rpo_B AL123456

RPOB_FW1 CAA AAC AGC CGC TAG TCC TAGTC 

84 Devonshire et al. (2015)47RPOB_RV1 AAG GAG ACC CGG TTT GGC 

RPOB_P1 [6FAM]AGT CGC CCG CAA AGT TCC 
TCGAA[NFQ]

N. meningitidis ctrA AM4210808

CtrA_F GCC GTT TGT TGG CGA TAT TT

150 O’Sullivan et al. (2014)14CtrA_R GCA CGA ATC ACC GAC ACA TT

CtrA_HP [6FAM]CGG TGG TCG GTA AAA CGC CTGG 
[BHQ1]

P. aeruginosa regA EU342000

regA_F TGC TGG TGG CAC AGG ACA T

65 Lee et al. (2006)48regA_R TTG TTG GTG CAG TTC CTC ATTG 

regA_MGB [6FAM] CAG ATG CTT TGC CTCAA [MGBNFQ]

S. agalactiae sip HQ878436

sip_F ATC CTG AGA CAA CAC TGA CA

78 O’Sullivan et al. (2014)14sip-R TTG CTG GTG TTT CTA TTT TCA 

sip-HP [6FAM] ATC AGA AGA GTC ATA CTG CCA CTT 
C [BHQ1]

S. aureus coA AB436985

coA_F GTA GAT TGG GCA ATT ACA TTT TGG AGG 

117 O’Sullivan et al. (2014)14coA_R CGC ATC TGC TTT GTT ATC CCA TGT A

coA-HP [6FAM] TAG GCG CAT TAG CAG TTG CATC 
[BHQ1]

S. enterica ttr AE006468

ttr_F CGG CGA TGC GTA TCA CTT T

61 This studyttr_R TTG GAC ACA GTG CGG TAT CC

ttr_P [FAM] CAT CGG CAT TAA CCC GGG CG [BHQ1]

S. epidermidis femA_SE U23713

F femA-SE TGC CTT TAC AGA TAG CAT GCCA 

172 Francois et al. (2003)49R femA-SE AGT AAG TAA GCA AGC TGC AAT GAC C

P femA-SE TCA TTT CAC GCA AAC TGT TGG CCA CTATG 

S. pneumoniae lytA HG531769

LytA_F ACG CAA TCT AGC AGA TGA AGC 

101 Harris et al. (2008)50LytA_R TGT TTG GTT GGT TAT TCG TGC 

LytA_HP [6FAM] TTT GCC GAA AAC GCT TGA TAC AGG 
G [BHQ1]

S. pyogenes csrR JX414161

csrR_F TGG ATG TGG TTG CAG GTT TAGAC 

79 O’Sullivan et al. (2014)14csrR_R CGG GCA AGT AGT TCT TCA ATGG 

csrR_HP [6FAM] CGG TGC AGA CGA CTA TAT TGT TAA 
ACC [BHQ1]
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Results
Amplicon sequencing. Mock community gDNA from two samples (MCM 2α and β) was PCR-amplified 
with 16S rRNA gene primers and sequenced using two different strategies. The mean number of reads per sam-
ple after sequencing were 845,651 (s.d. 246,478). The performance of these approaches have been previously 
 determined11 where they were referred to as strategy β which used multiple forward primers to the same prim-
ing site amplifying a region spanning variable regions 1 and 2 and strategy γ which used degenerate bases in the 
primers to amplify a region spanning variable regions 4, 5 and 6.

The inter‑laboratory study. Thirteen laboratories participated and submitted their results. The analysis 
steps applied are summarised in Table 4. The full commands used to run pipelines are available in Additional 
File 4. Most laboratories followed similar approaches except for one laboratory which used the online pipeline 
BIOiPLUG which implements the EzBioCloud  database40. It is closed source and so could not be compared to 
the other pipelines in the same detail. Of the remaining twelve laboratories, eleven performed some form of fil-
tering on the read data before clustering into OTUs and all laboratories merged overlaps between the read pairs. 
Sequence clustering, OTU assignment and taxonomic assignment differed between laboratories generally by 
those that used QIIME and mothur. Notable exceptions were the laboratories that used BLAST and USEARCH. 
There was an almost even split by those that assigned OTUs de novo and those using a closed reference method. 
Half of the participating laboratories applied further filtering steps to their sequence reads after OTU assign-
ment. The different filtering steps are outlined in Table 4.

Results were reported as relative abundance with 97% OTU identity by the participating laboratories. As 
the taxonomic depth reported by the laboratories varied, it was decided that in order to compare the data the 
approach which would use the largest proportion of the data for cross-comparison was chosen; comparing the 
results using family level was therefore the optimal approach (Fig. 1A–D).

16S rRNA gene amplicon sequencing compared to dPCR results. The relative abundance of each 
taxonomic group was determined using 16S rRNA gene amplicon sequence data, and these relative abundance 
(RA) values were compared to the ‘true’ relative abundance, as determined through dPCR analysis of each taxon 
independently.

The dPCR approach in this study characterised the material according to single copy species specific genes 
whereas the 16S rRNA gene amplicon sequencing results have to be normalised based on the number of copies 
of this operon per genome. Differences are reported as fold-differences in RA between 16S amplicon results 
and dPCR results. In general, the results of the 16S rRNA amplicon sequencing approach differed by less than 
three-fold when compared to the dPCR value (Additional File 5). Differences greater than three-fold were 
described by 11/13 laboratories when reporting the abundance of Mycobacteriaceae (range 5.70–94.72 fold) and 
10/13 laboratories when reporting the abundance of Pseudomonadaceae (range 3.26–466.34) in MCM2α v12. 
These families of organisms were the least abundant organisms in the sample; Pseudomonadaceae at 0.0015% 
and Mycobacteriaceae at 0.002% according to dPCR (Fig. 1). To determine if this observation was as a result of 
these families being the least abundant in the material, and therefore might represent a threshold which could 
be applied when analysing data for composition, we compared the results observed for the same variable regions 
but with the second mock DNA sample (MCM2β). This time, a different pattern was observed. The reported 
abundance of Neisseriaceae (the least abundant family of organisms, present at 0.005%) was very similar to the 
dPCR result, differing only by onefold on average except for laboratories 5 and 8 which differed by 61- and 11-fold 
respectively. Laboratory 5 used a custom database for taxonomic assignment, whereas the other laboratories 
used large public databases (Table 4). Laboratory 8 was the only participant to normalise their data using CSS, 
rather than taking a fraction from the total number of sequences within a sample. For most other laboratories, 
differences were less than three-fold. The differences comparing V1–2 amplicon sequencing to dPCR of MCM2β 
were greatest for the Mycobacteriaceae with 9/13 laboratories reporting fold differences greater than three.

Table 3.  Primers used for this study. a Based on numbering from gene rrsH accession number AE014075 from 
E. coli CFT073 complete genome NCBI reference sequence: NC_004431.1

Strategy Variable Regions Primer Sequence (5′–3′) Positiona

β 1–2
Forward

GCT CAG ATT GAA CGC TGG CGG 22–358

GTT CAG ATT GAA CGC TGG CGG 

GCT CAG GAC GAA CGC TGG CGG 

GCT CAG GAT TAA CGC TGG CGG 

GCT CAG GAT GAA CGC TGG CGG 

GCT CAG AAT GAA CGC TGG CGG 

GCT CAG GGT GAA CGC TGG CGG 

GCT CAG AGT GAA CGC TGG CGG 

Reverse ACT GCT GCC TCC CGT AGG AGT 

γ 4–6
Forward GTG CCA GCA GYY GCG GTA ATAC 518–1079

Reverse CAC RAC ACG AGC TGA CGA CA
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When analysing the sequence data from V4–6 of MCM2α, all differences were less than three-fold compared 
to dPCR. For MCM2β differences in general were also less than three-fold except for large differences observed 
by laboratory 8 in terms of abundance of Mycobacteriaceae and Neisseriaceae (6.41 and 17.43 fold), Myco-
bacteriaceae reported by laboratory 6 (6.14 fold) in MCM2α (5, 33 and 49 fold respectively) and Neisseriaceae 
reported by laboratory 5 (73.29 fold).

In general, it was observed that the V4–6 region gave the most similar relative abundance compared to the 
dPCR results. It was observed for this primer set that many more OTUs were generated (as an example labora-
tory 13 reported an average 34 OTUs for the V1–2 region compared to 3240 OTUs for the V4–6 region). This 
could be due to the fact the V4–6 generates a much larger amplicon (~ 564 bp amplicon size for V4–6 v ~ 337 bp 

Table 4.  Summary of the methods used by the different laboratories.

Methods

Lab

1 2 3 4 5 6 7 8 9 10 11 12 13

Process-
ing of raw 
reads

Cutadapt—
trimmed 
primers

sickle—qual 
trim Q35

usearch 
fastx_trun-
cate—trim 
primers

None None None None

Trimmo-
matic—
qual 
trim < 20 
Phred score

Trimmo-
matic—qual 
trim < 3 Phred 
score

BIOiPLUG 
MTB 
(entirely 
black box)

None

Primers 
trimmed. 
Reads trimmed 
at Phred qual-
ity score < 3. 
Removed if 
length < 30 bp

None

Paired end 
read join

Mothur make.
contigs

QIIME1 
fastq-join

QIIME1 
fastq-join

Mothur 
make.
contigs

Mothur make.
contigs

Mothur make.
contigs FLASH QIIME1 

fastq-join Seqprep BIOiPLUG 
MTB

USEARCH 
fastq_merge-
pairs

QIIME1 fastq-
join

Mothur make.
contigs

Removed 
reads with 
"N"

Yes Yes Yes Yes Yes (> 4) Yes No Yes Yes (> 10%) BIOiPLUG 
MTB No Yes Yes

Removed 
reads by 
length

Yes (removed 
outlier small 
and long reads)

No No

Yes 
(removed 
outlier small 
and long 
reads)

Yes (removed 
outlier long 
reads)

No No No Removed 
reads < 100 bp

BIOiPLUG 
MTB

Removed 
reads < 250 bp No

Yes, removed 
outlier long 
and short 
reads

Other pre 
cluster 
processing

Removed 
reads with a 
homopolymer 
run longer 
than 8

Removed 
sequences 
that didn’t 
have primer 
sequence 
present, 
truncated 
reads at Q 
score < 19

Truncated 
reads at Q 
score < 19

Removed 
reads with a 
homopoly-
mer run 
longer than 
6, removed 
sequences 
that didn’t 
have primer 
sequence 
present

Removed 
reads with a 
homopolymer 
run longer 
than 9

Removed 
reads with a 
homopolymer 
run longer 
than 8

None None None BIOiPLUG 
MTB

Removed 
sequences with 
greater than 
0.5 expected 
errors, trun-
cated reads at 
Q15

None

Removed 
reads with a 
homopolymer 
run longer 
than 6

pre OTU 
read align-
ment

Mothur against 
SILVA databaseNone None None Mothur against 

SILVA database
Mothur against 
SILVA database None None

Infernal 
against RFAM, 
followed by 
MAPseq 
against SILVA

BIOiPLUG 
MTB None None

Mothur 
against SILVA 
database

Pre cluster Mothur ~ 99% 
similarity None None None Mothur ~ 99% 

similarity
Mothur ~ 99% 
similarity None None None BIOiPLUG 

MTB None None Mothur ~ 99% 
similarity

Chimera 
detection VSEARCH VSEARCH USE-

ARCH61
USE-
ARCH61 UCHIME UCHIME None USE-

ARCH61 None BIOiPLUG 
MTB None None UCHIME

OTU 
assign-
ment and 
database

Mothur de 
novo

QIIME1 
UCLUST 
against 
SILVA

QIIME1 
USEARCH 
de novo

QIIME1 
UCLUST 
against 
SILVA

Mothur de 
novo Mothur de novo

BLASTN 
against Ref-
Seq RNA 
database

QIIME1 
USEARCH 
de novo

MAPseq 
against SILVA

BIOiPLUG 
MTB

USEARCH 
de novo OTU 
clustering

UCLUST 
OTU cluster-
ing against 
Greengenes. 
USEARCH de 
novo clustering 
against failures

Mothur de 
novo

Taxonomic 
classifca-
tion and 
database

Mothur against 
RDP database

QIIME1 
UCLUST 
against 
SILVA

QIIME1 
RDP against 
SILVA

QIIME1 
PYNAST 
aginst SILVA

Mothur 
against custom 
database

Mothur against 
SILVA database

BLASTN 
against Ref-
Seq RNA 
database

QIIME1 
UCLUST 
against 
SILVA

MAPseq 
against SILVA

BIOiPLUG 
MTB

QIIME1 
UCLUST 
against 
Greengenes

QIIME1 
UCLUST 
against 
Greengenes

Mothur 
against SILVA 
database

Post-pro-
cessing

Sequences 
removed if 
less than 90 
reads in 50% of 
samples

OTUs not 
represented 
in all 3 
repeats were 
discarded

QIIME1 
removed 
sequences in 
table present 
at fraction 
0.005 of total 
number of 
reads

QIIME1 
removed 
sequences in 
table present 
at fraction 
0.001 of total 
number of 
reads

None Oligotyping 
and ARB None

QIIME1 
removed 
sequences 
in table 
present at 
fraction 
0.00005 
of total 
number of 
reads

None BIOiPLUG 
MTB

Took forward 
only OTUs 
with species 
assignment

None

OTUs kept 
where mean 
relative 
abundance 
within repli-
cates > 0.0001

Normalisa-
tion of 
reads

Percentage 
abundance per 
sample

Percentage 
abundance 
per sample

Percentage 
abundance 
per sample

Percentage 
abundance 
per sample

Percentage 
abundance per 
sample

Percentage 
abundance per 
sample

Percentage 
abundance 
per sample

CSS
Percentage 
abundance per 
sample

BIOiPLUG 
MTB

Percentage 
abundance per 
sample

Percentage 
abundance per 
sample

Percentage 
abundance 
per sample
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amplicon size for V1–2) and because of this could have a higher expected high error rate within those sequences 
which may lead to an over estimation of OTU richness.

To determine the influence that the different steps in the bioinformatic pipeline had on the results, results 
were clustered using NDMS (non-metric multidimensional scaling) plots to see if results group according to 
OTU assignment tool, OTU assignment database and taxa assignment database (Fig. 2A–C). Using ANOSIM 
we found statistically significant clustering of results due to the variable region amplified (p = 0.027) but not by 
laboratory, OTU assignment tool and taxa assignment database. The choice of OTU database or de novo methods 
also showed statistically significant clustering (p = 0.021). The choice of the Greengenes database for this step 
had a significant influence on the results, as observed by the data reported from laboratory 12 (Fig. 2A). This 
database choice however did not influence the results to this degree when laboratory 12 analysed V4–6 of both 
materials. In addition, results from laboratory 8 were more different compared to the other laboratories in the 
results reported for MCM2α and MCM2β perhaps due to normalisation strategy. It was observed that the results 
reported by laboratory 5 for MCM2β for V1–2 and V4–6 differed compared to the other laboratories due to using 
a custom database for taxa assignment rather than the choice of OTU database or assignment tool (Fig. 2C).

Some of the laboratories did not report the presence of some of families of organisms (Additional File 5). 
Enterococcaceae appeared to be the family most commonly unreported; by laboratory 4 in V1–2 of both materi-
als, laboratory 5 in V4–6 of both materials, laboratory 13 in MCM2α V1–2 and MCM2β V4–6 and laboratory 2 
in MCM2β V4–6. In addition, Mycobacteriaceae were not reported by laboratory 12 in V1–2 of both materials 
and Psuedomonadaceae were not reported by laboratory 5 in V4–6 of both materials.

Shotgun metagenomic sequencing compared to dPCR results. Shotgun metagenomic sequencing 
was performed on each of the gDNAs in addition to triplicate sequencing runs on the MCM2α and MCM2β 
(Additional File 6). The mean number of reads per sample after sequencing were 27,678,330 (s.d. 5,540,768). 
After metagenomic assembly of three MCM2α and three MCM2β replicates the average percentage of reads that 
mapped to the assembled contigs were 87%, 88% and 86% for MCM2α and 72%, 89% and 90% for MCM2β. 
The depth of sequencing of the assembled organisms in each sample differed with their relative abundance and 
ranged from a mean of 16 reads in low abundance organisms up to a mean of 900 reads in the high abundance 
samples. When compared to the dPCR data it was observed that the results were less than 1.8-fold different 
in terms of abundance of each organism between the two methods except for P. aeruginosa which was over-

Figure 1.  (A–D) The % family abundance reported by each laboratory including the nominal and dPCR 
reported composition for the two materials; MCM2α, variable regions V1–2 (A) and V4–6 (B) and MCM2β, 
variable regions, V1–2 (C) and V4–6 (D).
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Figure 2.  (A–C) NDMS (non-metric multidimensional scaling) plots to see if results from the 13 laboratories 
cluster according to OTU assignment tool (A), OTU assignment database (B) and taxa assignment database (C). 
OTU assignment database was included for laboratories that used closed reference OTU picking. They generally 
compared their sequences against a reference database of sequences that clustered the reads into OTUs based 
on sequence similarity. Later, many laboratories assigned taxonomic identifiers to each of these OTUs using a 
separate database which had sequence data (sometimes not clustered into OTUs) and which taxa that sequence 
originated from.
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represented in both materials according to shotgun metagenomics sequencing (7.34 higher in MCM2α and 5.59 
in MCM2β) (Additional File 7). Previous work analysing a different material had the same observation, but the 
underlying reason is not fully  understood11. The source of P. aeruginosa was the same between the two studies 
but different batches were used. The shotgun sequencing method did not identify organisms present at the lowest 
abundance (S. pneumoniae and A. baumannii in MCM2α and S. enterica, A. baumannii and N. meningitidis in 
MCM2β). These organisms were of low abundance in the materials (≤ 0.003%) and so this could be explained by 
the sequencing coverage not being adequate to identify organisms at this level of abundance.

Additional taxa reported in the shotgun metagenomics data included Bradyrhizobiaceae and Bradyrhizobium, 
each present at 0.08%. These taxa were reported in all three units analysed. When each individual genomic 
DNA preparation was analysed by shotgun sequencing, this organism was present in the genomic preparation 
of hCMV (14% of total dataset), K. pneumoniae (12%) and S. aureus (0.03%). The Bradyrhizobiaceae family was 
also observed in the 16S rRNA analysis of V4–6 of MCM2α and MCM2β by laboratory 5 at 0.01% and 0.001% 
respectively. Laboratories 7, 9, 10 and 12 also reported this family but at a much lower abundance (< 0.00001%) 
and this was observed from both V4–6 and V1–2. For laboratories reporting Bradyrhizobiaceae presence it was 
not observed in all sequencing replicates unlike what was reported for the shotgun sequencing data. This family 
of bacteria has been observed as a contaminant in previous next generation sequencing  studies41,42.

Discussion
The 16S rRNA gene amplicon sequencing procedure requires a multi-step process in order to determine the 
microbial composition of a sample. Bioinformatic analysis is crucial and involves multiple tools and steps as 
well as varying parameters. The bioinformatic tools used in this study represent relatively straightforward and 
simple to integrate for 16S rRNA gene amplicon analysis and are relatively less computationally intensive than 
when studying entire metagenomes. With the increasing diversity of bioinformatics tools and of the parameters 
which determine how each of these tools are used, it can be difficult to determine which tool will give the most 
accurate representation of the sample composition. In the face of this growing challenge, the use of control mate-
rials aids researchers in pipeline validation and choice of pipeline. These materials can also be used to evaluate 
current and future software versions. However, the choice of the most appropriate control material is itself an 
unresolved challenge and the ‘true’ composition of the reference community can be difficult to verify. Here we 
applied dPCR to determine the absolute and relative abundance of each organism in our control materials using 
species-specific assays that allowed for an accurate measurement of the composition of each of the materials and 
provides an absolute method for determining the composition of microbial standards.

In this study it was observed that in general there was good agreement when comparing the material composi-
tion according to the different 16S rRNA gene amplicon sequencing data results from the different laboratories to 
dPCR, with differences of less than three fold. Most large discrepancies were encountered with organisms present 
at low abundance. However, this result varied by analysis of variable regions under investigation. For example, 
analysis of 16S rRNA gene amplicon sequence data generated with the V4–6 primer set was more concordant 
with the dPCR analysis of the composition of the source materials than were amplicons covering the V1–2 region. 
However the method using this primer set as was observed for laboratory 5 was not concordant with the dPCR 
result. This laboratory used a custom database for taxonomic assignment, whereas the other laboratories used 
large public databases. It could be that the custom database was missing some key sequences that would lead to 
under-representation and over-representation of certain taxa.

Some of the laboratories did not identify families of organisms known to be present in the materials. This 
must have been because of the different methods applied. Laboratory 4, for example, applied a very stringent 
0.1% relative abundance OTU cut-off which would remove many of the OTUs present, including the Entero-
coccaceae. It was observed that it was always the lowest abundance taxa that were found to be missing from the 
results when stringent filtering of the data was applied. The shotgun metagenomic sequencing approach also 
under-estimated the presence of this family. This could be due to the fact that this family is present at 0.6% in 
the MCM2α. Both 16S rRNA gene amplicon and metagenomic sequencing find it hard to differentiate between 
low abundance organisms and low-level contamination of bacterial DNA in each sample.

The inclusion of technical replicates allowed the reproducibility of the individual laboratory methods to be 
investigated. Overall they demonstrated good precision with coefficient of variation (CV) of < 10% in general 
(Table 5), apart from the results from laboratory 12 which, although used QIIME 1 like many others, performed 
no filtering of the OTU assigned reads which have previously been shown to be of poorer quality.

In this setting it was observed that the bioinformatic analysis of the V4–6 of 16S rRNA gene more closely 
resembled the determined composition using dPCR with V4–6 mean Bray–Curtis similarity to dPCR of 0.62 
(95% CI 0.56–0.69) compared to 0.58 (95% CI 0.51–0.65) for V1–2. After omission of the results from laboratory 
8 for MCM2α, all of the other pipelines were on average 0.84 fold different compared to dPCR (range 0.02—2.4). 
This is a very impressive result in terms of performance of the various 16S rRNA pipelines, all of which are 
composed of multiple steps, in analysing these materials.

Shotgun metagenomic sequencing results compared to dPCR results demonstrated for the most part good 
agreement, except for reporting of the abundance of P. aeruginosa where there were the largest differences, and 
also in the reporting of the lower abundance organisms in the materials. The precision of this approach was also 
determined and was demonstrated to be very good except for the lower abundance organisms (present at ≤ 0.01% 
abundance). It should be noted here that the comparison to the shotgun metagenomic sequencing approach was 
not from an inter-laboratory study, as was the case for the 16S rRNA data, but was from a single analysis workflow. 
So a further study is warranted to compare analysis tools for shotgun metagenomic data.
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Family

Laboratory number (% CV)

1 3 4 5 6 7 8 9 10 11 12 13

(A)

Neisseriaceae 1.2 1.0 1.1 1.1 1.1 1.1 0.4 1.1 0.9 0.9 104.0 1.1

Pasteurellaceae 1.9 2.0 2.2 2.1 2.1 2.0 0.6 2.1 2.8 1.9 13.9 2.0

Moraxellaceae 3.5 3.1 2.6 3.5 2.9 2.9 0.9 2.8 3.6 3.0 17.4 2.8

Enterobacteriaceae 1.3 1.8 1.7 1.3 1.8 1.8 0.9 2.1 0.4 2.3 31.4 1.8

Staphylococcaceae 2.4 2.4 2.2 2.7 2.4 2.3 0.6 2.3 2.4 2.3 6.8 2.4

Streptococcaceae 3.7 3.6 3.7 3.6 3.7 3.7 0.9 3.8 3.5 3.6 38.5 3.8

Enterococcaceae 2.5 2.4 0.0 0.1 2.4 2.4 1.3 2.6 3.0 2.1 50.9 0.0

Mycobacteriaceae 7.5 8.5 17.0 9.4 8.4 8.4 1.4 7.8 6.5 9.4 0.0 8.5

Pseudomonadaceae 2.0 1.9 0.3 2.1 1.3 1.7 0.5 7.0 71.3 1.8 4.1 1.5

(B)

Neisseriaceae 6.24 2.59 2.82 5.65 2.91 0.94 0.66 2.22 3.37 3.30 2.39 2.75

Pasteurellaceae 10.58 3.58 1.82 4.45 1.85 2.41 0.77 0.97 1.11 3.02 1.69 1.99

Moraxellaceae 8.03 3.96 6.18 9.76 6.00 3.38 1.41 5.69 5.01 5.50 5.29 6.33

Enterobacteriaceae 5.23 2.22 1.63 4.83 1.97 0.57 0.96 2.09 8.13 2.02 1.37 2.24

Staphylococcaceae 1.57 1.23 1.27 3.22 1.23 0.54 0.91 1.79 1.34 0.36 1.31 1.31

Streptococcaceae 7.04 4.24 4.60 9.43 4.60 3.34 0.66 4.96 3.57 3.88 4.08 4.51

Enterococcaceae 28.15 9.26 11.20 0.00 12.91 9.85 2.22 14.90 12.16 10.85 12.14 13.09

Mycobacteriaceae 11.39 7.95 0.23 29.59 16.88 10.96 1.81 83.48 21.69 11.64 12.72 13.35

Pseudomonadaceae 8.73 12.55 0.23 0.00 11.27 8.32 4.10 9.61 11.80 6.06 8.61 10.99

(C)

Streptococcaceae 0.61 1.32 1.28 3.57 3.87 1.06 0.59 0.99 0.58 1.02 24.52 1.17

Moraxellaceae 4.60 4.65 4.54 3.54 6.71 4.88 1.09 5.06 4.53 4.63 18.70 4.79

Enterobacteriaceae 1.39 3.96 0.92 1.25 3.82 1.48 0.60 1.60 3.00 3.55 8.39 1.45

Pasteurellaceae 2.68 1.83 1.95 2.07 7.14 1.76 0.68 1.86 1.38 1.85 21.20 1.84

Staphylococcaceae 3.77 4.28 4.03 2.69 4.42 3.99 0.65 39.95 3.72 4.05 17.94 4.07

Pseudomonadaceae 5.36 4.60 4.35 2.11 2.84 4.82 1.14 5.63 4.43 3.79 5.96 4.64

Enterococcaceae 6.59 5.63 0.00 0.06 4.92 5.45 1.72 5.46 5.17 5.01 20.47 4.30

Mycobacteriaceae 1.72 1.36 1.41 9.39 5.15 1.46 0.65 1.25 1.64 1.24 0.00 1.26

Neisseriaceae 3.30 1.80 0.29 1.11 4.02 1.50 2.97 1.60 3.55 2.30 126.69 1.50

(D)

Streptococcaceae 5.46 4.27 4.13 9.26 2.81 3.18 0.66 4.90 3.90 4.16 4.25 4.57

Moraxellaceae 11.77 6.49 5.52 10.10 3.57 6.00 0.20 5.84 6.27 5.63 6.18 5.93

Enterobacteriaceae 7.04 3.96 4.19 5.08 1.64 3.88 0.96 2.58 4.79 3.24 3.80 3.85

Pasteurellaceae 18.45 5.55 6.73 4.76 3.59 5.29 0.93 6.53 6.37 5.61 6.22 8.84

Staphylococcaceae 8.52 3.74 3.83 3.43 5.42 3.24 0.60 85.54 4.46 3.05 3.95 5.00

Pseudomonadaceae 7.21 1.58 3.47 0.00 3.69 1.99 1.27 2.18 2.36 3.45 2.59 2.36

Enterococcaceae 9.53 3.07 5.54 0.00 7.06 2.56 1.70 3.71 5.51 1.18 3.15 0.00

Mycobacteriaceae 1.25 2.67 4.81 29.76 1.02 3.20 0.86 4.57 2.73 5.83 4.09 4.51

Neisseriaceae 6.64 1.35 0.74 5.32 2.97 3.26 3.38 3.02 1.45 4.53 3.98 3.48

Organism % CV

(E)

N. meningitidis 1.59

K. pneumoniae 1.72

H. influenzae 3.72

M. catarrhalis 4.44

S. aureus 8.92

S. pyogenes 8.15

E. coli 12.62

S. agalactiae 10.96

P. aeruginosa 21.80

E. faecalis 12.97

M. tuberculosis 42.92

S. enterica *

S. pneumoniae NR

Continued
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Conclusions
Determining the microbial composition of a sample can be undertaken by various high-throughput sequencing. 
Frequently this involves sequencing of variable regions of the 16S rRNA genes. We evaluated the multi-step pro-
cess in assigning OTUs to a complex sample in terms of repeatability and reproducibility using control materials 
containing complex communities of microbes. The methods in general demonstrated high precision; however 
caution needs to be applied when drawing conclusions for microbiome data as variation between methods could 
significantly alter results.

In this study the reproducibility of the bioinformatics component was optimal when analysing the V4–6 
regions which gave the most concordance with the dPCR analysis and the sequencing approach. While there was 
good agreement in general when comparing the different bioinformatics approaches, caution is required when 
using custom databases and applying high-stringency cut-offs that could misrepresent the relative abundance 
of organisms present. These findings are independent of software versions used and should be considered for 
current and future formats. This study provides compelling evidence of the importance of interrogating meth-
ods through the use of carefully designed control materials which could underpin future selection of the most 
appropriate methods to be applied to samples of interest.

Data availability
The datasets generated and/or analysed during the current study are available in the European Nucleotide Archive 
repository, https:// www. ebi. ac. uk/ ena/ brows er/ view/ PRJEB 34919.
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