14 research outputs found

    Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Get PDF
    The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact

    Phylogeographic and evolutionary history analyses of the warty crab Eriphia verrucosa (Decapoda, Brachyura, Eriphiidae) unveil genetic imprints of a late Pleistocene vicariant event across the Gibraltar Strait, erased by postglacial expansion and admixture among refugial lineages

    Get PDF
    Abstract Background The Pleistocene cyclic sea-level fluctuations are thought to have markedly affected the distribution and genetic architecture of Atlanto-Mediterranean biota. Despite the acknowledged key role played by these historical events in shaping population genetic structure of marine species, little is still known about the processes involved in shaping the spatial distribution of genetic variation within intertidal species. We intended in this study to reconstruct the phylogeography of a common and widely distributed coastal species across the East Atlantic and Mediterranean Sea (the warty crab Eriphia verrucosa), aiming to unravel potential microevolutionary processes likely involved in shaping its genetic polymorphism. For this purpose, a total of 155 specimens of E. verrucosa from 35 locations across the entire distribution range were analyzed by comparing a 453 basepairs region of the mitochondrial gene cytochrome oxidase subunit 1 (Cox1). Results Our results unveiled the prevalence of high genetic connectivity among East Atlantic and Mediterranean populations, with noticeable genetic distinctiveness of the peripheral population from the Azores. Spatio-temporal patterns of genetic diversification and demographic history allowed retrieving genetic imprints of late Pleistocene vicariant event across the Gibraltar Strait followed by subsequent postglacial expansion events for both the East Atlantic and Mediterranean regions. Integrative evidences from the outcomes of comparison of regional genetic diversification, as well as evolutionary and biogeographic histories reconstructions, support the existence of potential glacial refugia for E. verrucosa in the East Atlantic and western Mediterranean. Our results also revealed low levels of genetic variability along with recent demographic and spatial expansion events for eastern Mediterranean warty crabs, suggesting that the eastern areas within the distribution range of the species might have been recently colonized from putative glacial refugia. Conclusions These findings provide new insights into the phylogeography and evolutionary history of a common but poorly studied Atlanto-Mediterranean decapod species. Specifically, they contribute to the understanding of the impact of historical processes on shaping contemporary population genetic structure and diversity in intertidal marine species

    Phylogeography of the littoral prawn species Palaemon elegans (Crustacea: Caridea: Palaemonidae) across the Mediterranean Sea unveils disparate patterns of population genetic structure and demographic history in the two sympatric genetic types II and III

    No full text
    In this study, we examine the spatial distribution of genetic diversity of the littoral prawn species complex Palaemon elegans across the Mediterranean, with an emphasis in the eastern Mediterranean, and compare patterns of phylogeographic structure between the two genetic types II and III across potential gene flow barriers. For this purpose, a total of 293 mtDNA sequences of the cytochrome oxidase subunit-1 (Cox1) gene, including a newly generated dataset of 114 sequences, were obtained from 32 Mediterranean locations. The retrieved differences in genealogy and biogeographic patterns between both genetic types, as revealed by the outcome of a TCS statistical parsimony procedure, suggest different colonisation patterns in type II and type III within the Mediterranean. Furthermore, particular gradual transitions of both genetic types were unveiled across different geographic scales. Our results showed not only a marked latitudinal cline in the southeastern Mediterranean, but also a remarkable transition of the proportion of both types along the relatively small scale of the Italian coast. Detailed population genetic investigations and phylogeographic examinations within each genetic type datasets of P. elegans revealed evident and contrasting patterns of genetic structure in type II and type III. While the one-level analysis of molecular variance (AMOVA) resulted in significant genetic differentiation for both examined datasets, the outcome of multidimensional scaling (MDS), PERMUT, spatial analysis of molecular variance (SAMOVA) and two level-AMOVA analyses showed an obvious lack of phylogeographic structure within type II, versus significant population structuring within type III across known gene flow barriers in the Mediterranean. Notably, the outcome of isolation by distance (IBD) and isolation by environment (IBE) analyses within the type III dataset showed that both geographic and environmental distances were significant predictors of genetic distances. The remarkable difference in biogeographic patterns and demographic history [revealed mainly by Bayesian skyline plots (BSP) analysis] between both types suggests the likely involvement of different processes, including larval behaviour and/or residual effects of different phases of evolutionary history in the Mediterranean Sea

    Phylogeography of the Atlantic Blue Crab <i>Callinectes sapidus</i> (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Get PDF
    The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact

    Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Full text link
    [EN] Due to its large size and importance in commercial and recreational fishery, the blue crab, Callinectes sapidus, has always been a well-known crab species all along the temperate and tropical American east coast. Over the past century, there have been increasing reports of this species from Africa, Asia, and Europe. However, the corresponding introduction pathways remain a reason for speculation. Its long larval development in marine plankton and tolerance towards varying salinities are prerequisites for a successful dispersal by marine currents or in ballast waters. On the other hand, being a highly valued seafood, it is conceivable that C. sapidus may have been intentionally released to establish breeding populations elsewhere. The species started expanding conspicuously in the east Mediterranean after the 1930s (Nile Delta, Thessaloniki Bay). On the other hand, western Mediterranean records are much more recent and regionally confined. The reconstruction of their origin is the main goal of the current study. For that purpose, the genetic composition of populations from the American native range and from the entire Mediterranean needed to be included and used for the overall comparison. It appears that only a few founding individuals are responsible for the invasion into Spanish and Italian waters, arguing in favor of a dispersal theory. The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact.Schubart, CD.; Deli, T.; Mancinelli, G.; Cilenti, L.; Gil-Fernández, A.; Falco, S.; Berger, S. (2023). Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion. Biology. 12(1):1-18. https://doi.org/10.3390/biology1201003511812

    Parapatric genetic divergence among deep evolutionary lineages in the Mediterranean green crab, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), accounts for a sharp phylogeographic break in the Eastern Mediterranean

    Get PDF
    bstract Background: Recently, population genetic studies of Mediterranean marine species highlighted patterns of genetic divergence and phylogeographic breaks, due to the interplay between impacts of Pleistocene climate shifts and contemporary hydrographical barriers. These factors markedly shaped the distribution of marine organisms and their genetic makeup. The present study is part of an ongoing effort to understand the phylogeography and evolutionary history of the highly dispersive Mediterranean green crab, Carcinus aestuarii (Nardo, 1847), across the Mediterranean Sea. Recently, marked divergence between two highly separated haplogroups (genetic types I and II) of C. aestuarii was discerned across the Siculo-Tunisian Strait, suggesting an Early Pleistocene vicariant event. In order to better identify phylogeographic patterns in this species, a total of 263 individuals from 22 Mediterranean locations were analysed by comparing a 587 basepair region of the mitochondrial gene Cox1 (cytochrome oxidase subunit 1). The examined dataset is composed of both newly generated sequences (76) and previously investigated ones (187). Results: Our results unveiled the occurrence of a highly divergent haplogroup (genetic type III) in the most north-eastern part of the Mediterranean Sea. Divergence between the most distinct type III and the common ancestor of both types I and II corresponds to the Early Pleistocene and coincides with the historical episode of separation between types I and II. Our results also revealed strong genetic divergence among adjacent regions (separating the Aegean and Marmara seas from the remaining distribution zone) and confirmed a sharp phylogeographic break across the Eastern Mediterranean. The recorded parapatric genetic divergence, with the potential existence of a contact zone between both groups in the Ionian Sea and notable differences in the demographic history, suggest the likely impact of paleoclimatic events, as well as past and contemporary oceanographic processes, in shaping genetic variability of this species. Conclusions: Our findings not only provide further evidence for the complex evolutionary history of the green crab in the Mediterranean Sea, but also stress the importance of investigating peripheral areas in the species' distribution zone in order to fully understand the distribution of genetic diversity and unravel hidden genetic units and local patterns of endemismResearch Fund of Bogazici University in Istanbul (Turkey) ; DAAD exchange project (PPP program) of the University of Regensburg (Germany) ;Institute of Fish Resources in Varna (Bulgaria) ; University of RegensburgPublisher's Versio

    Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining Origins and Genetic Connectivity of a Large-Scale Invasion

    Get PDF
    The American blue crab Callinectes sapidus is a particularly successful invader in estuarine ecosystems worldwide. Despite increasing awareness of its potential harm, the invasion history and underlying genetic diversity of this species within the Mediterranean Sea remain unknown. This study constitutes the first large-scale approach to study phylogeographic patterns of C. sapidus in Europe, facilitated by the first comparison of all currently available COI sequence data. For this investigation, 71 individuals of C. sapidus were newly analyzed and the entire COI gene was sequenced and used for a comparative phylogeographic analyses. For the first time, two separately used adjacent regions of this gene were combined in a single dataset. This allowed emphasizing the prevalence of three geographically defined lineages within the native range: (1) eastern North America, including the Gulf of Mexico, (2) the Caribbean, and (3) Brazil. New data from the Mediterranean reveal that non-native populations of C. sapidus are characterized by a conspicuously low genetic diversity (except for Turkey, where stocking took place), and that there is surprisingly low connectivity among established populations. The occurrence of strong genetic bottlenecks suggests few founder individuals. This confirms that, even under a scenario of restricted large-scale gene flow, a very limited number of invasive individuals is sufficient for a massive impact

    Unravelling population genetic structure with mitochondrial DNA in a notional panmictic coastal crab species: sample size makes the difference

    Get PDF
    Background: The extent of genetic structure of a species is determined by the amount of current gene flow and the impact of historical and demographic factors. Most marine invertebrates have planktonic larvae and consequently wide potential dispersal, so that genetic uniformity should be common. However, phylogeographic investigations reveal that panmixia is rare in the marine realm. Phylogeographic patterns commonly coincide with geographic transitions acting as barriers to gene flow. In the Mediterranean Sea and adjoining areas, the best known barriers are the Atlantic-Mediterranean transition, the Siculo-Tunisian Strait and the boundary between Aegean and Black seas. Here, we perform the so far broadest phylogeographic analysis of the crab Pachygrapsus marmoratus, common across the north-eastern Atlantic Ocean, Mediterranean and Black seas. Previous studies revealed no or weak genetic structuring at meso-geographic scale based on mtDNA, while genetic heterogeneity at local scale was recorded with microsatellites, even if without clear geographic patterns. Continuing the search for phylogeographic signal, we here enlarge the mtDNA dataset including 51 populations and covering most of the species' distribution range. Results: This enlarged dataset provides new evidence of three genetically separable groups, corresponding to the Portuguese Atlantic Ocean, Mediterranean Sea plus Canary Islands, and Black Sea. Surprisingly, hierarchical AMOVA and Principal Coordinates Analysis agree that our Canary Islands population is closer to western Mediterranean populations than to mainland Portugal and Azores populations. Within the Mediterranean Sea, we record genetic homogeneity, suggesting that population connectivity is unaffected by the transition between the western and eastern Mediterranean. The Mediterranean metapopulation seems to have experienced a relatively recent expansion around 100,000 years ago. Conclusions: Our results suggest that the phylogeographic pattern of P. marmoratus is shaped by the geological history of Mediterranean and adjacent seas, restricted current gene flow among different marginal seas, and incomplete lineage sorting. However, they also caution from exclusively testing well-known biogeographic barriers, thereby neglecting other possible phylogeographic patterns. Mostly, this study provides evidence that a geographically exhaustive dataset is necessary to detect shallow phylogeographic structure within widespread marine species with larval dispersal, questioning all studies where species have been categorized as panmictic based on numerically and geographically limited datasets
    corecore