289 research outputs found

    Chaotic cold accretion on to black holes in rotating atmospheres

    Get PDF
    Chaotic cold accretion (CCA) profoundly differs from classic black hole accretion models. Using 3D high-resolution simulations, we probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the accretion rate to ~1/3 of the Bondi rate. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number < 1. Extended multiphase filaments condense out of the hot phase via thermal instability and rain toward the black hole, boosting the accretion rate up to 100 times the Bondi rate. Initially, turbulence broadens the angular momentum distribution of the hot gas, allowing the cold phase to condense with prograde or retrograde motion. Subsequent chaotic collisions between the cold filaments, clouds, and a clumpy variable torus promote the cancellation of angular momentum, leading to high accretion rates. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r−1r^{-1} density profiles, as recently discovered in M 87 and NGC 3115. The synthetic H{\alpha} images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.Comment: 18 pages, 21 figures, published in A&A; fully revised version with new major results related to H{\alpha} and X-ray observation

    Spitzer Observations of Transient, Extended Dust in Two Elliptical Galaxies: New Evidence of Recent Feedback Energy Release in Galactic Cores

    Full text link
    Spitzer observations of extended dust in two optically normal elliptical galaxies provide a new confirmation of buoyant feedback outflow in the hot gas atmospheres around these galaxies. AGN feedback energy is required to prevent wholesale cooling and star formation in these group-centered galaxies. In NGC 5044 we observe interstellar (presumably PAH) emission at 8 microns out to about 5 kpc. Both NGC 5044 and 4636 have extended 70 microns emission from cold dust exceeding that expected from stellar mass loss. The sputtering lifetime of this extended dust in the ~1keV interstellar gas, ~10^7 yrs, establishes the time when the dust first entered the hot gas. Evidently the extended dust originated in dusty disks or clouds, commonly observed in elliptical galaxy cores, that were disrupted, heated and buoyantly transported outward. The surviving central dust in NGC 5044 and 4636 has been disrupted into many small filaments. It is remarkable that the asymmetrically extended 8 micron emission in NGC 5044 is spatially coincident with Halpha+[NII] emission from warm gas. A calculation shows that dust-assisted cooling in buoyant hot gas moving out from the galactic core can cool within a few kpc in about ~10^7 yrs, explaining the optical line emission observed. The X-ray images of both galaxies are disturbed. All timescales for transient activity - restoration of equilibrium and buoyant transport in the hot gas, dynamics of surviving dust fragments, and dust sputtering - are consistent with a central release of feedback energy in both galaxies about 10^7 yrs ago.Comment: 13 pages. Accepted by ApJ; minor typos correcte

    PAH Spectroscopy from 1-5 μ\mum

    Full text link
    The PAH model predicts many weak emission features in the 1-5 μ\mum region that can resolve significant questions that it has faced since its inception in the mid-80s. These features contain fundamental information about the PAH population that is inaccessible via the much stronger PAH bands in the 5-20 μ\mum region. Apart from the 3.3 μ\mum band and plateau, PAH spectroscopy across most of the 1-5 μ\mum region has been unexplored due to its low intrinsic intensity. ISO and Akari covered some of this wavelength range, but lacked the combined sensitivity and resolution to measure the predicted bands with sufficient fidelity. The spectroscopic capabilities of the NIRSpec instrument on board JWST will make it possible to measure and fully characterize many of the PAH features expected in this region. These include the fundamental, overtone and combination C-D and C≡\equivN stretching bands of deuterated PAHs, cyano-PAHs (PAH-C≡\equiv N), and the overtones and combinations of the strong PAH bands that dominate the 5-20 μ\mum region. These bands will reveal the amount of D tied up in PAHs, the PAH D/H ratio, the D distribution between PAH aliphatic and aromatic subcomponents, and delineate key stages in PAH formation and evolution on an object-by-object basis and within extended objects. If cyano-PAHs are present, these bands will also reveal the amount of cyano groups tied up in PAHs, determine the N/C ratio within that PAH subset, and distinguish between the bands near 4.5 μ\mum that arise from CD versus C≡\equivN.Comment: 13 page, 5 figures, 2 table

    AMUSE-VIRGO. III: mid-infrared photometry of early-type galaxies and limits on obscured nuclear emission

    Full text link
    We complete our census of low-level nuclear activity in Virgo Cluster early-type galaxies by searching for obscured emission using Spitzer Space Telescope mid-infrared (MIR) imaging at 24mu. Of a total sample of 95 early-type galaxies, 53 objects are detected, including 16 showing kiloparsec-scale dust in optical images. One dimensional and two dimensional surface photometry of the 37 detections without extended dust features reveals that the MIR light is more centrally concentrated than the optical light as traced by Hubble Space Telescope F850LP-band images. No such modeling was performed for the sources with dust detected in the optical images. We explore several possible sources of the MIR excess emission, including obscured nuclear emission. We find that radial metallicity gradients in the stellar population appear to be a natural and most likely explanation for the observed behavior in a majority of the sources. Alternatively, if the concentrated MIR emission were due to nuclear activity, it would imply a MIR-to-X luminosity ratio ~5-10 for the low luminosity AGN detected in X-rays by our survey. This ratio is an order of magnitude larger than that of typical low-luminosity AGN and would imply an unusual spectral energy distribution. We conclude that the black holes found by our survey in quiescent early-type galaxies in Virgo have low bolometric Eddington ratios arising from low accretion rates and/or highly radiatively inefficient accretion.Comment: 17 pages, 8 figures; accepted for publication in Ap

    Deep Chandra Observations of A2495: A Possible Sloshing-regulated Feedback Cycle in a Triple-offset Galaxy Cluster

    Get PDF
    We present the analysis of new, deep Chandra observations (130 ks) of the galaxy cluster A2495. This object is known for the presence of a triple offset between the peaks of the intracluster medium (ICM), the brightest cluster galaxy (BCG), and the warm gas glowing in Hα line. The new Chandra data confirm that the X-ray emission peak is located at a distance of ∼6.2 kpc from the BCG, and at ∼3.9 kpc from the Hα emission peak. Moreover, we identify two generations of X-ray cavities in the ICM, likely inflated by the central radio galaxy activity. Through a detailed morphological and spectral analysis, we determine that the power of the active galactic nucleus (AGN) outbursts (P cav = 4.7 ± 1.3 × 1043 erg s−1) is enough to counterbalance the radiative losses from ICM cooling (L cool = 5.7 ± 0.1 × 1043 erg s−1). This indicates that, despite a fragmented cooling core, A2495 still harbors an effective feedback cycle. We argue that the offsets are most likely caused by sloshing of the ICM, supported by the presence of spiral structures and a probable cold front in the gas at ∼58 kpc east of the center. Ultimately, we find that the outburst interval between the two generations of X-ray cavities is of the order of the dynamical sloshing timescale, as already hinted from the previous Chandra snapshot. We thus speculate that sloshing may be able to regulate the timescales of AGN feedback in A2495, by periodically fueling the central AGN

    A BCG with Offset Cooling:Is the AGN Feedback Cycle Broken in A2495?

    Get PDF
    We present a combined radio/X-ray analysis of the poorly studied galaxy cluster A2495 (z = 0.07923) based on new EVLA and Chandra data. We also analyze and discuss Hα emission and optical continuum data retrieved from the literature. We find an offset of ∼6 kpc between the cluster brightest cluster galaxy (BCG) (MCG+02-58-021) and the peak of the X-ray emission, suggesting that the cooling process is not taking place on the central galaxy nucleus. We propose that sloshing of the intracluster medium (ICM) could be responsible for this separation. Furthermore, we detect a second, ∼4 kpc offset between the peak of the Hα emission and that of the X-ray emission. Optical images highlight the presence of a dust filament extending up to ∼6 kpc in the cluster BCG and allow us to estimate a dust mass within the central 7 kpc of 1.7 × 105 M . Exploiting the dust-to-gas ratio and the L Hα-M mol relation, we argue that a significant amount (up to 109 M ) of molecular gas should be present in the BCG of this cluster. We also investigate the presence of ICM depressions, finding two putative systems of cavities; the inner pair is characterized by t age ∼ 18 Myr and P cav ∼ 1.2 × 1043 erg s-1, the outer one by t age ∼ 53 Myr and P cav ∼ 5.6 × 1042 erg s-1. Their age difference appears to be consistent with the freefall time of the central cooling gas and with the offset timescale estimated with the Hα kinematic data, suggesting that sloshing is likely playing a key role in this environment. Furthermore, the cavities' power analysis shows that the active galactic nucleus energy injection is able to sustain the feedback cycle, despite cooling being offset from the BCG nucleus.</p

    AGN Driven Weather and Multiphase Gas in the Core of the NGC 5044 Galaxy Group

    Full text link
    A deep Chandra observation of the X-ray bright group, NGC 5044, shows that the central region of this group has been strongly perturbed by repeated AGN outbursts. These recent AGN outbursts have produced many small X-ray cavities, cool filaments and cold fronts. We find a correlation between the coolest X-ray emitting gas and the morphology of the Ha filaments. The Ha filaments are oriented in the direction of the X-ray cavities, suggesting that the warm gas responsible for the Halpha emission originated near the center of NGC 5044 and was dredged up behind the buoyant, AGN-inflated X-ray cavities. A detailed spectroscopic analysis shows that the central region of NGC 5044 contains spatially varying amounts of multiphase gas. The regions with the most inhomogeneous gas temperature distribution tend to correlate with the extended 235 MHz and 610 MHz radio emission detected by the GMRT. This may result from gas entrainment within the radio emitting plasma or mixing of different temperature gas in the regions surrounding the radio emitting plasma by AGN induced turbulence. Accounting for the effects of multiphase gas, we find that the abundance of heavy elements is fairly uniform within the central 100 kpc, with abundances of 60-80% solar for all elements except oxygen, which has a significantly sub-solar abundance. In the absence of continued AGN outbursts, the gas in the center of NGC 5044 should attain a more homogeneous distribution of gas temperature through the dissipation of turbulent kinetic energy and heat conduction in approximately 10e8 yr. The presence of multiphase gas in NGC 5044 indicates that the time between recent AGN outbursts has been less than approximately 10e8 yr
    • …
    corecore