269 research outputs found

    The orbit of the close spectroscopic binary epsilon Lupi and the intrinsic variability of its early B-type components

    Get PDF
    We subjected 106 new high-resolution spectra of the double-lined spectroscopic close binary epsilon Lupi, obtained in a time-span of 17 days from two different observatories, to a detailed study of orbital and intrinsic variations. We derived accurate values of the orbital parameters. We refined the sidereal orbital period to 4.55970 days and the eccentricity to e=0.277. By adding old radial velocities, we discovered the presence of apsidal motion with a period of the rotation of apses of about 430 years. Such a value agrees with theoretical expectations. Additional data is needed to confirm and refine this value. Our dataset did not allow us to derive the orbit of the third body, which is known to orbit the close system in approximately 64 years. We present the secondary of epsilon Lupi as a new beta Cephei variable, while the primary is a beta Cephei suspect. A first detailed analysis of line-profile variations of both primary and secondary led to detection of one pulsation frequency near 10.36 c/d in the variability of the secondary, while no clear periodicity was found in the primary, although low-amplitude periodicities are still suspected. The limited accuracy and extent of our dataset did not allow any further analysis, such as mode-identification.Comment: 13+3 pages, 20 figures. Astronomy and Astrophysics, accepte

    Interpretation of the variability of the <i>β</i> Cephei star <i>λ</i> Scorpii. I. The multiple character

    Get PDF
    We derive accurate values of the orbital parameters of the close binary β Cephei star λ Scorpii. Moreover, we present the first determination of the properties of the triple system to which λ Scorpii belongs. Our analysis is based on a time series of 815 high-resolution spectra, covering a timespan of 14 years. We find a close orbit of 5d.9525days (e=0.26) and a wide orbit of approximately 1082d days (e=0.23). The orbital parameters of the triple star and a spectrum synthesis lead us to conclude that the system is composed of two early-type B stars and a low-mass pre-main-sequence star rather than containing an ultra-massive white dwarf as claimed before. Our proposed configuration is compatible with population synthesis. The radial velocity variations of the primary allow us to confirm the presence of at least one pulsation mode with frequency 4.679410 c d-1 which is subject to the light-time effect in the triple system. A detailed analysis of the complex line-profile variations is described in a subsequent paper

    Unravelling the baffling mystery of the ultrahot wind phenomenon in white dwarfs

    Full text link
    The presence of ultra-high excitation (UHE) absorption lines (e.g., O VIII) in the optical spectra of several of the hottest white dwarfs poses a decades-long mystery and is something that has never been observed in any other astrophysical object. The occurrence of such features requires a dense environment with temperatures near 10610^6K, by far exceeding the stellar effective temperature. Here we report the discovery of a new hot wind white dwarf, GALEXJ014636.8+323615. Astonishingly, we found for the first time rapid changes of the equivalent widths of the UHE features, which are correlated to the rotational period of the star (P=0.242035P=0.242035d). We explain this with the presence of a wind-fed circumstellar magnetosphere in which magnetically confined wind shocks heat up the material to the high temperatures required for the creation of the UHE lines. The photometric and spectroscopic variability of GALEXJ014636.8+323615 can then be understood as consequence of the obliquity of the magnetic axis with respect to the rotation axis of the white dwarf. This is the first time a wind-fed circumstellar magnetosphere around an apparently isolated white dwarf has been discovered and finally offers a plausible explanation of the ultra hot wind phenomenon.Comment: Published in MNRAS Letter

    The population of hot subdwarf stars studied with Gaia I. The catalogue of known hot subdwarf stars

    Get PDF
    In preparation for the upcoming all-sky data releases of the Gaia mission we compiled a catalogue of known hot subdwarf stars and candidates drawn from the literature and yet unpublished databases. The catalogue contains 5613 unique sources and provides multi-band photometry from the ultraviolet to the far infrared, ground based proper motions, classifications based on spectroscopy and colours, published atmospheric parameters, radial velocities and light curve variability information. Using several different techniques we removed outliers and misclassified objects. By matching this catalogue with astrometric and photometric data from the Gaia mission, we will develop selection criteria to construct a homogeneous, magnitude-limited all-sky catalogue of hot subdwarf stars based on Gaia data.Comment: 11 pages, A&A accepte

    On the Hα\alpha emission from the β\beta Cephei system

    Get PDF
    Be stars, which are characterised by intermittent emission in their hydrogen lines, are known to be fast rotators. This fast rotation is a requirement for the formation of a Keplerian disk, which in turn gives rise to the emission. However, the pulsating, magnetic B1IV star β\beta Cephei is a very slow rotator that still shows Hα\alpha emission episodes like in other Be stars, contradicting current theories. We investigate the hypothesis that the Hα\alpha emission stems from the spectroscopically unresolved companion of β\beta Cep. Spectra of the two unresolved components have been separated in the 6350-6850\AA range with spectro-astrometric techniques, using 11 longslit spectra obtained with ALFOSC at the Nordic Optical Telescope, La Palma. We find that the Hα\alpha emission is not related to the primary in β\beta Cep, but is due to its 3.4 magnitudes fainter companion. This companion has been resolved by speckle techniques, but it remains unresolved by traditional spectroscopy. The emission extends from about -400 to +400 km s1^{-1}. The companion star in its 90-year orbit is likely to be a classical Be star with a spectral type around B6-8. By identifying its Be-star companion as the origin of the Hα\alpha emission behaviour, the enigma behind the Be status of the slow rotator β\beta Cep has been resolved.Comment: 4 pages, 3 figures. Accepted by A&A Letter

    Kepler detection of a new extreme planetary system orbiting the subdwarf-B pulsator KIC10001893

    Full text link
    KIC10001893 is one out of 19 subdwarf-B (sdB) pulsators observed by the Kepler spacecraft in its primary mission. In addition to tens of pulsation frequencies in the g-mode domain, its Fourier spectrum shows three weak peaks at very low frequencies, which is too low to be explained in terms of g modes. The most convincing explanation is that we are seeing the orbital modulation of three Earth-size planets (or planetary remnants) in very tight orbits, which are illuminated by the strong stellar radiation. The orbital periods are P1=5.273, P2=7.807, and P3=19.48 hours, and the period ratios P2/P1=1.481 and P3/P2=2.495 are very close to the 3:2 and 5:2 resonances, respectively. One of the main pulsation modes of the star at 210.68 {\mu}Hz corresponds to the third harmonic of the orbital frequency of the inner planet, suggesting that we see, for the first time in an sdB star, g-mode pulsations tidally excited by a planetary companion. The extreme planetary system that emerges from the Kepler data is very similar to the recent discovery of two Earth-size planets orbiting the sdB pulsator KIC05807616 (Charpinet et al. 2011a).Comment: 6 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    KIC7668647: a 14 day beaming sdB+WD binary with a pulsating subdwarf

    Get PDF
    The recently discovered subdwarf B (sdB) pulsator KIC7668647 is one of the 18 pulsating sdB stars detected in the Kepler field. It features a rich g-mode frequency spectrum, with a few low-amplitude p-modes at short periods. We use new ground-based low-resolution spectroscopy, and the near-continuous 2.88 year Kepler lightcurve, to reveal that KIC7668647 consists of a subdwarf B star with an unseen white-dwarf companion with an orbital period of 14.2d. An orbit with a radial-velocity amplitude of 39km/s is consistently determined from the spectra, from the orbital Doppler beaming seen by Kepler at 163ppm, and from measuring the orbital light-travel delay of 27 by timing of the many pulsations seen in the Kepler lightcurve. The white dwarf has a minimum mass of 0.40 M_sun. We use our high signal-to-noise average spectra to study the atmospheric parameters of the sdB star, and find that nitrogen and iron have abundances close to solar values, while helium, carbon, oxygen and silicon are underabundant relative to the solar mixture. We use the full Kepler Q06--Q17 lightcurve to extract 132 significant pulsation frequencies. Period-spacing relations and multiplet splittings allow us to identify the modal degree L for the majority of the modes. Using the g-mode multiplet splittings we constrain the internal rotation period at the base of the envelope to 46-48d as a first seismic result for this star. The few p-mode splittings may point at a slightly longer rotation period further out in the envelope of the star. From mode-visibility considerations we derive that the inclination of the rotation axis of the sdB in KIC7668647 must be around ~60 degrees. Furthermore, we find strong evidence for a few multiplets indicative of degree 3 <= L <= 8, which is another novelty in sdB-star observations made possible by Kepler.Comment: arXiv admin note: text overlap with arXiv:1206.387
    corecore