78 research outputs found

    Constraining the degree of the dominant mode in QQ Vir

    Full text link
    We present early results of the application of a method which uses multicolor photometry and spectroscopy for \ell discrimination. This method has been successfully applied to the pulsating hot subdwarf Balloon 090100001. Here we apply the method to QQ Vir (PG1325+101). This star was observed spectroscopically and photometrically in 2008. Details on spectroscopy can be found in Telting et al. (2010) while photometry and preliminary results on \ell discrimination are provided here. The main aim of this work was to compare the value of the \ell parameter derived for the main mode in QQ Vir to previously published values derived by using different methods.Comment: Proceedings of The Fourth Meeting on Hot Subdwarf Stars and Related Objects held in China, 20-24 July 2009. Accepted for publication in Astrophysics and Space Scienc

    High-Precision Spectroscopy of Pulsating Stars

    Get PDF
    We review methodologies currently available to interprete time series of high-resolution high-S/N spectroscopic data of pulsating stars in terms of the kind of (non-radial) modes that are excited. We illustrate the drastic improvement of the detection treshold of line-profile variability thanks to the advancement of the instrumentation over the past two decades. This has led to the opportunity to interprete line-profile variations with amplitudes of order m/s, which is a factor 1000 lower than the earliest line-profile time series studies allowed for.Comment: To appear in Precision Spectroscopy in Astrophysics, Eds . Pasquini, M. Romaniello, N.C. Santos, and A. Correia, Springer-Verlag series "ESO Astrophysics Symposia". 4 pages, 1 figur

    Synthetic pulsational line profile variations

    Full text link
    We have produced simulated time series of high resolution spectroscopy for sdBs. We present the first results of testing classical mode identification techniques. Here, in particular, we analyse the behaviour of individual spectral lines and discuss the results and applicability of the moment method.Peer reviewe

    PHL 417: a zirconium-rich pulsating hot subdwarf (V366 Aquarid) discovered in K2 data

    Full text link
    The Kepler spacecraft observed the hot subdwarf star PHL 417 during its extended K2 mission, and the high-precision photometric light curve reveals the presence of 17 pulsation modes with periods between 38 and 105 min. From follow-up ground-based spectroscopy, we find that the object has a relatively high temperature of 35 600 K, a surface gravity of log g / cm s^-2 = 5.75 and a supersolar helium abundance. Remarkably, it also shows strong zirconium lines corresponding to an apparent +3.9 dex overabundance compared with the Sun. These properties clearly identify this object as the third member of the rare group of pulsating heavy-metal stars, the V366-Aquarii pulsators. These stars are intriguing in that the pulsations are inconsistent with the standard models for pulsations in hot subdwarfs, which predicts that they should display short-period pulsations rather than the observed longer periods. We perform a stability analysis of the pulsation modes based on data from two campaigns with K2. The highest amplitude mode is found to be stable with a period drift, P, of less than 1.1 × 10^−9 s s^−1. This result rules out pulsations driven during the rapid stages of helium flash ignition.Published versio

    Pulsations and eclipse-time analysis of HW Vir

    Get PDF
    We analysed recent K2 data of the short-period eclipsing binary system HW Vir, which consists of a hot subdwarf-B type primary with an M-dwarf companion. We determined the mid-times of eclipses, calculated O–C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26 M⊙, which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 µHz, with the majority of peaks found below 2600 µHz. The amplitudes are below 0.1 part-per-thousand, too low to be detected with ground-based photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HW Vir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HW Vir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit
    corecore