79 research outputs found
LEAN MASS, MUSCLE STRENGTH AND GENE EXPRESSION IN COMMUNITY DWELLING OLDER MEN
Sarcopenia is associated with morbidity and mortality. Cellular pathways involved in the regulation of growth and atrophy affect myofibre size and subsequently, muscle strength. The objective of this study was to investigate whether skeletal muscle gene expression was associated with altered lean mass and grip strength in community-dwelling older men
Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity
The gut of most invertebrates is lined by a protective layer of chitin and glycoproteins, often designated as a peritrophic matrix. Previous research suggests that it forms a barrier that may protect the midgut epithelium from abrasive food particles and pathogens. Parasitic invertebrates ingesting vertebrate plasma have evolved additional strategies to protect themselves from hazardous host molecules consumed during feeding. An important part of the immediate defense in vertebrate plasma is complement-mediated killing. The Complement system is a complex network of more than 35 proteins present in human plasma that results in killing of foreign cells including the gut epithelial cells of a feeding parasite. Recently we found that scabies mites, who feed on skin containing plasma, produce several proteins that inhibit human complement within the mite gut. The mites excrete these molecules into the upper epidermis where they presumably also inhibit complement activity. Mite gut antigens that initially trigger the complement cascade have not been identified previously. Obvious possible targets of complement attack within the mite gut could be peritrophins. Our study describes the first peritrophin identified in scabies mites and indicates a possible role in complement activation
Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes
peer-reviewedBackground: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.Dairy Australia (through the Innovative Dairy Cooperative Research Center
Genetic architecture of gene expression in ovine skeletal muscle
In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle.
Results
The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation.
Conclusions
This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations
Tracing Cattle Breeds with Principal Components Analysis Ancestry Informative SNPs
The recent release of the Bovine HapMap dataset represents the most detailed survey of bovine genetic diversity to date, providing an important resource for the design and development of livestock production. We studied this dataset, comprising more than 30,000 Single Nucleotide Polymorphisms (SNPs) for 19 breeds (13 taurine, three zebu, and three hybrid breeds), seeking to identify small panels of genetic markers that can be used to trace the breed of unknown cattle samples. Taking advantage of the power of Principal Components Analysis and algorithms that we have recently described for the selection of Ancestry Informative Markers from genomewide datasets, we present a decision-tree which can be used to accurately infer the origin of individual cattle. In doing so, we present a thorough examination of population genetic structure in modern bovine breeds. Performing extensive cross-validation experiments, we demonstrate that 250-500 carefully selected SNPs suffice in order to achieve close to 100% prediction accuracy of individual ancestry, when this particular set of 19 breeds is considered. Our methods, coupled with the dense genotypic data that is becoming increasingly available, have the potential to become a valuable tool and have considerable impact in worldwide livestock production. They can be used to inform the design of studies of the genetic basis of economically important traits in cattle, as well as breeding programs and efforts to conserve biodiversity. Furthermore, the SNPs that we have identified can provide a reliable solution for the traceability of breed-specific branded products
Gender-Associated Genes in Filarial Nematodes Are Important for Reproduction and Potential Intervention Targets
Lymphatic filariasis is a neglected tropical disease that is caused by thread-like parasitic worms that live and reproduce in lymphatic vessels of the human host. There are no vaccines to prevent filariasis, and available drugs are not effective against all stages of the parasite. In addition, recent reports suggest that the filarial nematodes may be developing resistance to key medications. Therefore, there is an urgent need to identify new drug targets in filarial worms. The purpose of this study was to perform a genome-wide analysis of gender-associated gene transcription to improve understanding of key reproductive processes in filarial nematodes. Our results indicate that thousands of genes are differentially expressed in male and female adult worms. Many of those genes are involved in specific reproductive processes such as embryogenesis and spermatogenesis. In addition, expression of some of those genes is suppressed by tetracycline, a drug that leads to sterilization of adult female worms in many filarial species. Thus, gender-associated genes represent priority targets for design of vaccines and drugs that interfere with reproduction of filarial nematodes. Additional work with this type of integrated systems biology approach should lead to important new tools for controlling filarial diseases
A Cysteine Protease Is Critical for Babesia spp. Transmission in Haemaphysalis Ticks
Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites
A Bovine Model of Respiratory Chlamydia psittaci Infection: Challenge Dose Titration
This study aimed to establish and evaluate a bovine respiratory model of experimentally induced acute C. psittaci infection. Calves are natural hosts and pathogenesis may resemble the situation in humans. Intrabronchial inoculation of C. psittaci strain DC15 was performed in calves aged 2–3 months via bronchoscope at four different challenge doses from 106 to 109 inclusion-forming units (ifu) per animal. Control groups received either UV-inactivated C. psittaci or cell culture medium. While 106 ifu/calf resulted in a mild respiratory infection only, the doses of 107 and 108 induced fever, tachypnea, dry cough, and tachycardia that became apparent 2–3 days post inoculation (dpi) and lasted for about one week. In calves exposed to 109 ifu C. psittaci, the respiratory disease was accompanied by severe systemic illness (apathy, tremor, markedly reduced appetite). At the time point of most pronounced clinical signs (3 dpi) the extent of lung lesions was below 10% of pulmonary tissue in calves inoculated with 106 and 107 ifu, about 15% in calves inoculated with 108 and more than 30% in calves inoculated with 109 ifu C. psittaci. Beside clinical signs and pathologic lesions, the bacterial load of lung tissue and markers of pulmonary inflammation (i.e., cell counts, concentration of proteins and eicosanoids in broncho-alveolar lavage fluid) were positively associated with ifu of viable C. psittaci. While any effect of endotoxin has been ruled out, all effects could be attributed to infection by the replicating bacteria. In conclusion, the calf represents a suitable model of respiratory chlamydial infection. Dose titration revealed that both clinically latent and clinically manifest infection can be reproduced experimentally by either 106 or 108 ifu/calf of C. psittaci DC15 while doses above 108 ifu C. psittaci cannot be recommended for further studies for ethical reasons. This defined model of different clinical expressions of chlamydial infection allows studying host-pathogen interactions
Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping
<p>Abstract</p> <p>Background</p> <p>Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes.</p> <p>Results</p> <p>We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays.</p> <p>Conclusions</p> <p>Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants.</p
Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae
BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity
- …