194 research outputs found

    Video summarization by group scoring

    Get PDF
    In this paper a new model for user-centered video summarization is presented. Involvement of more than one expert in generating the final video summary should be regarded as the main use case for this algorithm. This approach consists of three major steps. First, the video frames are scored by a group of operators. Next, these assigned scores are averaged to produce a singular value for each frame and lastly, the highest scored video frames alongside the corresponding audio and textual contents are extracted to be inserted into the summary. The effectiveness of this approach has been evaluated by comparing the video summaries generated by this system against the results from a number of automatic summarization tools that use different modalities for abstraction

    Persistent positional nystagmus

    Full text link
    Involvement of the superior semicircular canal (SSC) in benign paroxysmal positional vertigo (BPPV) is rare. SSC BPPV is distinguished from the more common posterior semicircular canal (PSC) variant by the pattern of nystagmus triggered by the Dix‐Hallpike position: down‐beating torsional nystagmus in SSC BPPV versus up‐beating torsional nystagmus in PSC BPPV. SSC BPPV may be readily treated at the bedside, which is a key component in excluding central causes of down‐beating nystagmus. We present an unusual video case report believed to represent refractory SSC BPPV based on the pattern of nystagmus and the absence of any other central signs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86936/1/21848_ftp.pd

    Small footprint optoelectrodes using ring resonators for passive light localization

    Get PDF
    The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes

    Implementation of evidence-based practice for benign paroxysmal positional vertigo: DIZZTINCT– A study protocol for an exploratory stepped-wedge randomized trial

    Full text link
    Abstract Background Benign paroxysmal positional vertigo (BPPV) is the most common peripheral vestibular disorder, and accounts for 8% of individuals with moderate or severe dizziness. BPPV patients experience substantial inconveniences and disabilities during symptomatic periods. BPPV therapeutic processes – the Dix-Hallpike Test (DHT) and the Canalith Repositioning Maneuver (CRM) – have an evidence base that is at the clinical practice guideline level. The most commonly used CRM is the modified Epley maneuver. The DHT is the gold standard test for BPPV and the CRM is supported by numerous randomized controlled trials and systematic reviews. Despite this, BPPV care processes are underutilized. Methods/design This is a stepped-wedge, randomized clinical trial of a multi-faceted educational and care-process-based intervention designed to improve the guideline-concordant care of patients with BPPV presenting to the emergency department (ED) with dizziness. The unit of randomization and target of intervention is the hospital. After an initial observation period, the six hospitals will undergo the intervention in five waves (two closely integrated hospitals will be paired). The order will be randomized. The primary endpoint is measured at the individual patient level, and is the presence of documentation of either the Dix-Hallpike Test or CRM. The secondary endpoints are referral to a health care provider qualified to treat dizziness for CRM and 90-day stroke rates following an ED dizziness visit. Formative evaluations are also performed to monitor and identify potential and actual influences on the progress and effectiveness of the implementation efforts. Discussion If this study safely increases documentation of the DHT/CRM, this will be an important step in implementing the use of these evidenced-based processes of care. Positive results will support conducting larger-scale follow-up studies that assess patient outcomes. The data collection also enables evaluation of potential and actual influences on the progress and effectiveness of the implementation efforts. Trial registration ClinicalTrials.gov, ID: NCT02809599 . The record was first available to the public on 22 June 2016 prior to the enrollment of the first patients in October 2016.https://deepblue.lib.umich.edu/bitstream/2027.42/146751/1/13063_2018_Article_3099.pd

    Vestibular Rehabilitation Therapy: Review of Indications, Mechanisms, and Key Exercises

    Get PDF
    Vestibular rehabilitation therapy (VRT) is an exercise-based treatment program designed to promote vestibular adaptation and substitution. The goals of VRT are 1) to enhance gaze stability, 2) to enhance postural stability, 3) to improve vertigo, and 4) to improve activities of daily living. VRT facilitates vestibular recovery mechanisms: vestibular adaptation, substitution by the other eye-movement systems, substitution by vision, somatosensory cues, other postural strategies, and habituation. The key exercises for VRT are head-eye movements with various body postures and activities, and maintaining balance with a reduced support base with various orientations of the head and trunk, while performing various upper-extremity tasks, repeating the movements provoking vertigo, and exposing patients gradually to various sensory and motor environments. VRT is indicated for any stable but poorly compensated vestibular lesion, regardless of the patient's age, the cause, and symptom duration and intensity. Vestibular suppressants, visual and somatosensory deprivation, immobilization, old age, concurrent central lesions, and long recovery from symptoms, but there is no difference in the final outcome. As long as exercises are performed several times every day, even brief periods of exercise are sufficient to facilitate vestibular recovery. Here the authors review the mechanisms and the key exercises for each of the VRT goals
    • 

    corecore