14,537 research outputs found

    Upper limit on mh in the MSSM and M-SUGRA vs. prospective reach of LEP

    Get PDF
    The upper limit on the lightest CP-even Higgs boson mass, mh, is analyzed within the MSSM as a function of tan(beta) for fixed mtop and Msusy. The impact of recent diagrammatic two-loop results on this limit is investigated. We compare the MSSM theoretical upper bound on mh with the lower bound obtained from experimental searches at LEP. We estimate that with the LEP data taken until the end of 1999, the region mh < 108.2 GeV can be excluded at the 95% confidence level. This corresponds to an excluded region 0.6 <= tan(beta) <= 1.9 within the MSSM for mtop = 174.3 GeV and Msusy <= 1 TeV. The final exclusion sensitivity after the end of LEP, in the year 2000, is also briefly discussed. Finally, we determine the upper limit on mh within the Minimal Supergravity (M-SUGRA) scenario up to the two-loop level, consistent with radiative electroweak symmetry breaking. We find an upper bound of mh \approx 127 GeV for mtop = 174.3 GeV in this scenario, which is slightly below the bound in the unconstrained MSSM.Comment: 10 pages, 3 figure

    Linear Invariant Systems Theory for Signal Enhancement

    Get PDF
    This paper discusses a linear time invariant (LTI) systems approach to signal enhancement via projective subspace techniques. It provides closed form expressions for the frequency response of data adaptive finite impulse response eigenfilters. An illustrative example using speech enhancement is also presented.Este artigo apresenta a aplicação da teoria de sistemas lineares invariantes no tempo (LTI) na análise de técnicas de sub-espaço. A resposta em frequência dos filtros resultantes da decomposição em valores singulares é obtida aplicando as propriedades dos sistemas LTI

    An ALMA study of the Orion Integral Filament : I. Evidence for narrow fibers in a massive cloud

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aim. We have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF) in Orion in order to decipher whether or not all filaments are bundles of fibers. Methods. We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N 2H + (1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc (or ~2000 AU). Results. From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location in the cloud, these fibers are characterized by transonic internal motions, lengths of ~0.15 pc, and masses per unit length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Conclusions. Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection in nearby clouds suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combining these results with previous works in Musca, Taurus, and Perseus, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds, and the origin of clusters, emerge naturally from the initial concentration of fibers.Peer reviewedFinal Published versio

    Causal Anomalies in Kaluza-Klein Gravity Theories

    Get PDF
    Causal anomalies in two Kaluza-Klein gravity theories are examined, particularly as to whether these theories permit solutions in which the causality principle is violated. It is found that similarly to general relativity the field equations of the space-time-mass Kaluza-Klein (STM-KK) gravity theory do not exclude violation of causality of G\"odel type, whereas the induced matter Kaluza-Klein (IM-KK) gravity rules out noncausal G\"odel-type models. The induced matter version of general relativity is shown to be an efficient therapy for causal anomalies that occurs in a wide class of noncausal geometries. Perfect fluid and dust G\"odel-type solutions of the STM-KK field equations are studied. It is shown that every G\"odel-type perfect fluid solution is isometric to the unique dust solution of the STM-KK field equations. The question as to whether 5-D G\"odel-type non-causal geometries induce any physically acceptable 4-D energy-momentum tensor is also addressed.Comment: 16 page. LaTex file. To appear in Int. J. Mod. Phys. A (1998

    Análise citogenética de híbridos entre Triticum durum x Aegilops tauschii com potencial uso em programas de melhoramento genético de trigo.

    Get PDF
    Editores técnicos: Joseani Mesquita Antunes, Ana Lídia Variani Bonato, Márcia Barrocas Moreira Pimentel

    A wide survey for circumstellar disks in the Lupus complex

    Full text link
    Previous star formation studies have, out of necessity, often defined a population of young stars confined to the proximity of a molecular cloud. Gaia allows us to examine a wider, three-dimensional structure of nearby star forming regions, leading to a new understanding of their history. We present a wide-area survey covering 494 square degrees of the Lupus complex, a prototypical low-mass star forming region. Our survey includes all known molecular clouds in this region as well as parts of the Upper Scorpius (US) and Upper Centaurus Lupus (UCL) groups of the Sco-Cen complex. We combine Gaia DR2 proper motions and parallaxes as well as ALLWISE mid-infrared photometry to select young stellar objects (YSOs) with disks. The YSO ages are inferred from Gaia color-magnitude diagrams, and their evolutionary stages from the slope of the spectral energy distributions. We find 98 new disk-bearing sources. Our new sample includes objects with ages ranging from 1 to 15 Myr and masses ranging from 0.05 to 0.5 solar masses , and consists of 56 sources with thick disks and 42 sources with anemic disks. While the youngest members are concentrated in the clouds and at distances of 160 pc, there is a distributed population of slightly older stars that overlap in proper motion, spatial distribution, distance, and age with the Lupus and UCL groups. The spatial and kinematic properties of the new disk-bearing YSOs indicate that Lupus and UCL are not distinct groups. Our new sample comprises some of the nearest disks to Earth at these ages, and thus provides an important target for follow-up studies of disks and accretion in very low mass stars, for example with ALMA and ESO-VLT X-Shooter.Comment: Accepted for publication in A&

    Introdução e avaliação de forrageiras no município de Santana do Araguaia, Estado do Pará.

    Get PDF
    bitstream/item/32017/1/CPATU-BP115.pd

    High Resolution 4.7 um Keck/NIRSPEC Spectra of Protostars. I: Ices and Infalling Gas in the Disk of L1489 IRS

    Get PDF
    We explore the infrared M band (4.7 um) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R=25,000; Dv=12 km/s). Many narrow absorption lines of gas phase 12CO, 13CO, and C18O are detected, as well as a prominent band of solid 12CO. The gas phase 12CO lines have red shifted absorption wings (up to 100 km/s), likely originating from warm disk material falling toward the central object. The isotopes and the 12CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object (Hogerheijde 2001). This shows that the inward motions seen in millimeter wave emission lines continue to within ~0.1 AU from the star. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated and the depletion factor of CO onto grains is remarkably low (~7%). This study shows that high spectral resolution 4.7 um observations provide important and unique information on the dynamics and structure of protostellar disks and the evolution of ices in these disks.Comment: 11 pages, 6 figures Scheduled to appear in ApJ 568 n2, 1 April 200
    corecore