1,276 research outputs found

    Isotropisation at small scales of rotating helically-driven turbulence

    Get PDF
    We present numerical evidence of how three-dimensionalization occurs at small scale in rotating turbulence with Beltrami (ABC) forcing, creating helical flow. The Zeman scale Ω\ell_{\Omega} at which the inertial and eddy turn-over times are equal is more than one order of magnitude larger than the dissipation scale, with the relevant domains (large-scale inverse cascade of energy, dual regime in the direct cascade of energy EE and helicity HH, and dissipation) each moderately resolved. These results stem from the analysis of a large direct numerical simulation on a grid of 307233072^3 points, with Rossby and Reynolds numbers respectively equal to 0.07 and 2.7×1042.7\times 10^4. At scales smaller than the forcing, a helical wave-modulated inertial law for the energy and helicity spectra is followed beyond Ω\ell_{\Omega} by Kolmogorov spectra for EE and HH. Looking at the two-dimensional slow manifold, we also show that the helicity spectrum breaks down at Ω\ell_{\Omega}, a clear sign of recovery of three-dimensionality in the small scales.Comment: 13 pages, 6 figure

    Effect of helicity and rotation on the free decay of turbulent flows

    Get PDF
    The self-similar decay of energy in a turbulent flow is studied in direct numerical simulations with and without rotation. Two initial conditions are considered: one non-helical (mirror-symmetric), and one with maximal helicity. The results show that, while in the absence of rotation the energy in the helical and non-helical cases decays with the same rate, in rotating flows the helicity content has a major impact on the decay rate. These differences are associated with differences in the energy and helicity cascades when rotation is present. Properties of the structures that arise in the flow at late times in each time are also discussed.Comment: 4 pages, 4 figure

    The decay of Batchelor and Saffman rotating turbulence

    Get PDF
    The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two cannonical self-preserving solutions of the von K\'arm\'an-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations of freely decaying rotating turbulence with initial energy spectra k4\sim k^4 (Batchelor turbulence) and k2\sim k^2 (Saffman turbulence) and show that, while a self-similar decay cannot be identified for the total energy, the decay is indeed affected by long-range correlations. The decay of two-dimensional and three-dimensional modes follows distinct power laws in each case, which are consistent with predictions derived from the anisotropic von K\'arm\'an-Howarth equation, and with conservation of anisotropic integral quantities by the flow evolution

    The decay of turbulence in rotating flows

    Get PDF
    We present a parametric space study of the decay of turbulence in rotating flows combining direct numerical simulations, large eddy simulations, and phenomenological theory. Several cases are considered: (1) the effect of varying the characteristic scale of the initial conditions when compared with the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect of helicity (correlation between the velocity and vorticity); (3) the effect of Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial conditions. Initial conditions include the Taylor-Green vortex, the Arn'old-Beltrami-Childress flow, and random flows with large-scale energy spectrum proportional to k4k^4. The decay laws obtained in the simulations for the energy, helicity, and enstrophy in each case can be explained with phenomenological arguments that separate the decay of two-dimensional from three-dimensional modes, and that take into account the role of helicity and rotation in slowing down the energy decay. The time evolution of the energy spectrum and development of anisotropies in the simulations are also discussed. Finally, the effect of rotation and helicity in the skewness and kurtosis of the flow is considered.Comment: Sections reordered to address comments by referee

    Restrictive dermopathy with massive thrombosis: a previously uncreognized finding

    Get PDF
    Restrictive dermopathy (RD) is a lethal genodermatosis characterized by IUGR, tight and rigid skin, prominent superficial vasculature, epidermal hyperkeratosis, typical facial features, sparse/absent eyelashes and eyebrows, thin dysplastic clavicles, pulmonary hypoplasia and arthrogryposis. It is caused by LMNA or, more frequently, ZMPSTE24 mutations. We report 2 siblings with RD and ZMPSTE24 mutations. CASE REPORT: The mother is 28y G2P1. The couple was 1st cousin of Pakistani origin. Family history was unremarkable. The 1st pregnancy resulted in IUD at 27w, preceded by decreased fetal movement, oligohydramnios and IUGR at 24w. Autopsy was inconclusive and G-banding was not possible. Placenta showed ...postprin

    Crossover from Rate-Equation to Diffusion-Controlled Kinetics in Two-Particle Coagulation

    Full text link
    We develop an analytical diffusion-equation-type approximation scheme for the one-dimensional coagulation reaction A+A->A with partial reaction probability on particle encounters which are otherwise hard-core. The new approximation describes the crossover from the mean-field rate-equation behavior at short times to the universal, fluctuation-dominated behavior at large times. The approximation becomes quantitatively accurate when the system is initially close to the continuum behavior, i.e., for small initial density and fast reaction. For large initial density and slow reaction, lattice effects are nonnegligible for an extended initial time interval. In such cases our approximation provides the correct description of the initial mean-field as well as the asymptotic large-time, fluctuation-dominated behavior. However, the intermediate-time crossover between the two regimes is described only semiquantitatively.Comment: 21 pages, plain Te

    Interpocket polarization model for magnetic structures in rare-earth hexaborides

    Full text link
    The origin of peculiar magnetic structures in cubic rare-earth (R) hexaborides RB_6 is traced back to their characteristic band structure. The three sphere-like Fermi surfaces induce interpocket polarization of the conduction band as a part of a RKKY-type interaction. It is shown for the free-electron-like model that the interpocket polarization gives rise to a broad maximum in the intersite interaction I(q) around q=(1/4,1/4,1/2) in the Brillouin zone. This maximum is consistent with the superstructure observed in R=Ce, Gd and Dy. The wave-number dependence of I(q) is independently extracted from analysis of the spin-wave spectrum measured for NdB_6. It is found that I(q) obtained from fitting the data has a similarly to that derived by the interpocket polarization model, except that the absolute maximum now occurs at (0,0,1/2) in consistency with the A-type structure. The overall shape of I(q) gives a hint toward understanding an incommensurate structure in PrB_6 as well.Comment: 5 pages, 3 figures, submitted to J.Phys.Soc.Jp

    Thermalization and free decay in Surface Quasi-Geostrophic flows

    Get PDF
    We derive statistical equilibrium solutions of the truncated inviscid surface quasi-geostrophic (SQG) equations, and verify the validity of these solutions at late times in numerical simulations of the truncated SQG equations. The results indicate enstrophy thermalizes while energy can condense at the gravest modes, in agreement with previous indications of a direct cascade of enstrophy and an inverse cascade of energy in forced-dissipative SQG systems. At early times, the truncated inviscid SQG simulations show a behavior reminiscent of forced-dissipative SQG turbulence, and we identify spectral scaling laws for the energy and enstrophy spectra. Finally, a comparison between viscous and inviscid simulations allows us to identify free-decay similarity laws for the enstrophy in SQG turbulence at very large Reynolds number
    corecore