28 research outputs found

    Study of High Energy Heavy-Ion Collisions in a Relativistic BUU-Approach with Momentum-Dependent Mean-Fields

    Full text link
    We introduce momentum-dependent scalar and vector fields into the Lorentz covariant relativistic BUU- (RBUU-) approach employing a polynomial ansatz for the relativistic nucleon-nucleon interaction. The momentum-dependent parametrizations are shown to be valid up to about 1 GeV/u for the empirical proton-nucleus optical potential. We perform numerical simulations for heavy-ion collisions within the RBUU-approach adopting momentum-dependent and momentum-independent mean-fields and calculate the transverse flow in and perpendicular to the reaction plane, the directivity distribution as well as subthreshold K+-production. By means of these observables we discuss the particular role of the momentum-dependent forces and their implications on the nuclear equation of state. We find that only a momentum-dependent parameter-set can explain the experimental data on the transverse flow in the reaction plane from 150 - 1000 MeV/u and the differential K+-production cross sections at 1 GeV/u at the same time.Comment: 27 pages, figures can be obtained from the authors, UGI-93-0

    An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions

    Get PDF
    The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions intensive industries. Sectors such as steel, cement, and chemicals have so far largely been sheltered from the effects of climate policy. A major shift is needed, from contemporary industrial policy that mainly protects industry to policy strategies that transform the industry. For this purpose, we draw on a wide range of literatures including engineering, economics, policy, governance, and innovation studies to propose a comprehensive industrial policy framework. The policy framework relies on six pillars: directionality, knowledge creation and innovation, creating and reshaping markets, building capacity for governance and change, international coherence, and sensitivity to socio-economic implications of phase-outs. Complementary solutions relying on technological, organizational, and behavioural change must be pursued in parallel and throughout whole value chains. Current policy is limited to supporting mainly some options, e.g. energy efficiency and recycling, with some regions also adopting carbon pricing, although most often exempting the energy and emissions intensive industries. An extended range of options, such as demand management, materials efficiency, and electrification, must also be pursued to reach zero emissions. New policy research and evaluation approaches are needed to support and assess progress as these industries have hitherto largely been overlooked in domestic climate policy as well as international negotiations

    A European industrial development policy for prosperity and zero emissions

    Get PDF
    The objective of this paper is to outline and discuss the key elements of an EU industrial development policy consistent with the Paris Agreement. We also assess the current EU Industrial Strategy proposal against these elements. The “well below 2 °C” target sets a clear limit for future global greenhouse gas emissions and thus strict boundaries for the development of future material demand, industrial processes and the sourcing of feedstock; industry must evolve to zero emissions or pay for expensive negative emissions elsewhere. An industrial policy for transformation to net-zero emissions must include attention to directed technological and economic structural change, the demand for emissions intensive products and services, energy and material efficiency, circular economy, electrification and other net-zero fuel switching, and carbon capture and use or storage (CCUS). It may also entail geographical relocation of key basic materials industries to regions endowed with renewable energy. In this paper we review recent trends in green industrial policy. We find that it has generally focused on promoting new green technologies (e.g., PVs, batteries, fuel cells and biorefineries) rather than on decarbonizing the emissions intensive basic materials industries, or strategies for handling the phase-out or repurposing of sunset industries (e.g., replacing fossil fuel feedstocks for chemicals). Based on knowledge about industry and potential mitigation options, and insights from economics, governance and innovation studies, we propose a framework for the purpose of developing and evaluating industrial policy for net-zero emissions. This framework recognizes the need for: directionality; innovation; creating lead markets for green materials and reshaping existing markets; building capacity for governance and change; coherence with the international climate policy regime; and finally the need for a just transition. We find the announced EU Industrial Strategy to be strong on most elements, but weak on transition governance approaches, the need for capacity building, and creating lead markets

    A-RAF Kinase Functions in ARF6 Regulated Endocytic Membrane Traffic

    Get PDF
    BACKGROUND: RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal fragment (AR149) that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the recycling compartment. CONCLUSIONS/SIGNIFICANCE: A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in endocytic trafficking

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)
    corecore