824 research outputs found
Assessing the UK policies for broadband adoption
Broadband technology has been introduced to the business community and the public as a rapid way of exploiting the Internet. The benefits of its use (fast reliable connections, and always on) have been widely realised and broadband diffusion is one of the items at the top of the agenda for technology related polices of governments worldwide. In this paper an examination of the impact of the UK government’s polices upon broadband adoption is undertaken. Based on institutional theory a consideration of the manipulation of supply push and demand pull forces in the diffusion of broadband is offered. Using primary and secondary data sources, an analysis of the specific institutional actions related to IT diffusion as pursued by the UK government in the case of broadband is provided. Bringing the time dimension into consideration it is revealed that the UK government has shifted its attention from supply push-only strategies to more interventional ones where the demand pull forces are also mobilised. It is believed that this research will assist in the extraction of the “success factors” in government intervention that support the diffusion of technology with a view to render favourable results if applied to other national settings
Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films
Crystalline Silicon-on-Sapphire (SOS) films were implanted with boron (B)
and phosphorous (P) ions. Different samples, prepared by varying the ion
dose in the range to 5 x and ion energy in the range
150-350 keV, were investigated by the Raman spectroscopy, photoluminescence
(PL) spectroscopy and glancing angle x-ray diffraction (GAXRD). The Raman
results from dose dependent B implanted samples show red-shifted and
asymmetrically broadened Raman line-shape for B dose greater than
ions cm. The asymmetry and red shift in the Raman line-shape is
explained in terms of quantum confinement of phonons in silicon nanostructures
formed as a result of ion implantation. PL spectra shows size dependent visible
luminescence at 1.9 eV at room temperature, which confirms the presence
of silicon nanostructures. Raman studies on P implanted samples were also
done as a function of ion energy. The Raman results show an amorphous top SOS
surface for sample implanted with 150 keV P ions of dose 5 x ions
cm. The nanostructures are formed when the P energy is increased to
350 keV by keeping the ion dose fixed. The GAXRD results show consistency with
the Raman results.Comment: 9 Pages, 6 Figures and 1 Table, \LaTex format To appear in
SILICON(SPRINGER
Transforming growth factor-β in breast cancer: too much, too late
The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago. Although the action of TGFβ as a canonical tumor suppressor in breast is without a doubt, there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer. New knowledge that TGFβ regulates the DNA damage response, which underlies cancer therapy, reveals another facet of TGFβ biology that impedes cancer control. Too much TGFβ, too late in cancer progression is the fundamental motivation for pharmaceutical inhibition
In vitro study on the schedule-dependency of the interaction between pemetrexed, gemcitabine and irradiation in non-small cell lung cancer and head and neck cancer cells
<p>Abstract</p> <p>Background</p> <p>Based on their different mechanisms of action, non-overlapping side effects and radiosensitising potential, combining the antimetabolites pemetrexed (multitargeted antifolate, MTA) and gemcitabine (2',2'-difluorodeoxycytidine, dFdC) with irradiation (RT) seems promising. This <it>in vitro </it>study, for the first time, presents the triple combination of MTA, dFdC and irradiation using various treatment schedules.</p> <p>Methods</p> <p>The cytotoxicity, radiosensitising potential and cell cycle effect of MTA were investigated in A549 (NSCLC) and CAL-27 (SCCHN) cells. Using simultaneous or sequential exposure schedules, the cytotoxicity and radiosensitising effect of 24 h MTA combined with 1 h or 24 h dFdC were analysed.</p> <p>Results</p> <p>Including a time interval between MTA exposure and irradiation seemed favourable to MTA immediately preceding or following radiotherapy. MTA induced a significant S phase accumulation that persisted for more than 8 h after drug removal. Among different MTA/dFdC combinations tested, the highest synergistic interaction was produced by 24 h MTA followed by 1 h dFdC. Combined with irradiation, this schedule showed a clear radiosensitising effect.</p> <p>Conclusions</p> <p>Results from our <it>in vitro </it>model suggest that the sequence 24 h MTA → 1 h dFdC → RT is the most rational design and would, after confirmation in an <it>in vivo </it>setting, possibly provide the greatest benefit in the clinic.</p
Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas
BACKGROUND: Heterogeneity and low incidence comprise the biggest challenge in sarcoma diagnosis and treatment. Chemotherapy, although efficient for some sarcoma subtypes, generally results in poor clinical responses and is mostly recommended for advanced disease. Specific genomic aberrations have been identified in some sarcoma subtypes but few of them can be targeted with approved drugs. METHODS: We cultured and characterised patient-derived sarcoma cells and evaluated their sensitivity to 525 anti-cancer agents including both approved and non-approved drugs. In total, 14 sarcomas and 5 healthy mesenchymal primary cell cultures were studied. The sarcoma biopsies and derived cells were characterised by gene panel sequencing, cancer driver gene expression and by detecting specific fusion oncoproteins in situ in sarcomas with translocations. RESULTS: Soft tissue sarcoma cultures were established from patient biopsies with a success rate of 58%. The genomic profile and drug sensitivity testing on these samples helped to identify targeted inhibitors active on sarcomas. The cSrc inhibitor Dasatinib was identified as an active drug in sarcomas carrying chromosomal translocations. The drug sensitivity of the patient sarcoma cells ex vivo correlated with the response to the former treatment of the patient. CONCLUSIONS: Our results show that patient-derived sarcoma cells cultured in vitro are relevant and practical models for genotypic and phenotypic screens aiming to identify efficient drugs to treat sarcoma patients with poor treatment options.Peer reviewe
Evolving Synaptic Plasticity with an Evolutionary Cellular Development Model
Since synaptic plasticity is regarded as a potential mechanism for memory formation and learning, there is growing interest in the study of its underlying mechanisms. Recently several evolutionary models of cellular development have been presented, but none have been shown to be able to evolve a range of biological synaptic plasticity regimes. In this paper we present a biologically plausible evolutionary cellular development model and test its ability to evolve different biological synaptic plasticity regimes. The core of the model is a genomic and proteomic regulation network which controls cells and their neurites in a 2D environment. The model has previously been shown to successfully evolve behaving organisms, enable gene related phenomena, and produce biological neural mechanisms such as temporal representations. Several experiments are described in which the model evolves different synaptic plasticity regimes using a direct fitness function. Other experiments examine the ability of the model to evolve simple plasticity regimes in a task -based fitness function environment. These results suggest that such evolutionary cellular development models have the potential to be used as a research tool for investigating the evolutionary aspects of synaptic plasticity and at the same time can serve as the basis for novel artificial computational systems
From Bench to Bedside: Attempt to Evaluate Repositioning of Drugs in the Treatment of Metastatic Small Cell Lung Cancer (SCLC)
BACKGROUNDS:
Based on in vitro data and results of a recent drug repositioning study, some medications approved by the FDA for the treatment of various non-malignant disorders were demonstrated to have anti-SCLC activity in preclinical models. The aim of our study is to confirm whether use of these medications is associated with survival benefit.
METHODS:
Consecutive patients with pathologically confirmed, stage 4 SCLC were analyzed in this retrospective study. Patients that were prescribed statins, aspirin, clomipramine (tricyclic antidepressant; TCA), selective serotonin reuptake inhibitors (SSRIs), doxazosin or prazosin (α1-adrenergic receptor antagonists; ADRA1) were identified.
RESULTS:
There were a total of 876 patients. Aspirin, statins, SSRIs, ADRA1, and TCA were administered in 138, 72, 20, 28, and 5 cases, respectively. A statistically significant increase in median OS was observed only in statin-treated patients when compared to those not receiving any of the aforementioned medications (OS, 8.4 vs. 6.1 months, respectively; p = 0.002). The administration of SSRIs, aspirin, and ADRA1 did not result in a statistically significant OS benefit (median OS, 8.5, 6.8, and 6.0 months, respectively). The multivariate Cox model showed that, besides age and ECOG PS, radiotherapy was an independent survival predictor (Hazard Ratio, 2.151; 95% confidence interval, 1.828-2.525; p <0.001).
CONCLUSIONS:
Results of drug repositioning studies using only preclinical data or small numbers of patients should be treated with caution before application in the clinic. Our data demonstrated that radiotherapy appears to be an independent survival predictor in stage 4 SCLC, therefore confirming the results of other prospective and retrospective studies
Recommended from our members
Mother-infant interactions and regional brain volumes in infancy: an MRI study
Background: It is generally agreed that the human brain is responsive to environmental influences, and that the male brain may be particularly sensitive to early adversity. However, this is largely based on retrospective studies of older children and adolescents exposed to extreme environments in childhood. Less is understood about how normative variations in parent-child interactions are associated with the development of the infant brain in typical settings.
Method: To address this, we used magnetic resonance imaging to investigate the relationship between observational measures of mother-infant interactions and regional brain volumes in a community sample of 3-6 month old infants (N=39). In addition, we examined whether this relationship differed in male and female infants.
Results: We found that lower maternal sensitivity was correlated with smaller subcortical grey matter volumes in the whole sample, and that this was similar in both sexes. However, male infants who showed greater levels of positive communication and engagement during early interactions had smaller cerebellar volumes.
Conclusion These preliminary findings suggest that variations in mother-infant interaction dimensions are associated with differences in infant brain development. Although the study is cross-sectional and causation cannot be inferred, the findings reveal a dynamic interaction between brain and environment that may be important when considering interventions to optimize infant outcomes
Honokiol Crosses BBB and BCSFB, and Inhibits Brain Tumor Growth in Rat 9L Intracerebral Gliosarcoma Model and Human U251 Xenograft Glioma Model
BACKGROUND: Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. METHODOLOGIES: We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. PRINCIPAL FINDINGS: We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC(50) of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm(3)) compared with vehicle group (238.63±19.69 mm(3), P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm(3)) compared with vehicle group (2914.17±780.52 mm(3), P = 0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05). CONCLUSIONS/SIGNIFICANCE: This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma
- …