8 research outputs found

    Erratum: Large Magnetocaloric Effect And Refrigerant Capacity Near Room Temperature In As-cast Gd5ge2si2-xsn X Compounds (applied Physics Letters (2013) 102 (192410))

    No full text
    [No abstract available]1042Carvalho, A.M.G., Tedesco, J.C.G., Pires, M.J.M., Soffner, M.E., Guimarães, A.O., Mansanares, A.M., Coelho, A.A., Large magnetocaloric effect and refrigerant capacity near room temperature in as-cast Gd5Ge2Si2 -xSnx compounds (2013) Appl. Phys. Lett., 102, p. 192410. , 10.1063/1.480697

    Large Magnetocaloric Effect And Refrigerant Capacity Near Room Temperature In As-cast Gd5ge2si2-xsnx Compounds

    No full text
    Large values of isothermal entropy change (ΔST) and refrigerant capacity have been found in Gd5Ge2Si 2-xSnx compounds. Values of the order of 20 J kg -1 K-1 for -ΔST were obtained in as-cast samples when submitted to a magnetic field variation of 2 T. First-order-magneto-structural transition is induced by the substitution of silicon by tin and it is shifted to lower temperatures with the tin content. It means that the magnetocaloric effect on this series can be properly tuned to a specific practical thermodynamic cycle, including near room temperature range. © 2013 AIP Publishing LLC.10219Gschneidner Jr., K.A., Pecharsky, V.K., (2000) Annu. Rev. Mater. Sci., 30, pp. 387-429. , 10.1146/annurev.matsci.30.1.387Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , 10.1103/PhysRevLett.78.4494Wang, H.B., Altounian, Z., Ryan, D.H., (2002) Phys. Rev. B, 66, p. 214413. , 10.1103/PhysRevB.66.214413Ryan, D.H., Elouneg-Jamróz, M., Van Lierop, J., Altounian, Z., Wang, H.B., (2003) Phys. Rev. Lett., 90 (11), p. 117202. , 10.1103/PhysRevLett.90.117202Campoy, J.C.P., Plaza, E.J.R., Magnus, A., Carvalho, G., Coelho, A.A., Gama, S., Von Ranke, P.J., (2004) J. Magn. Magn. Mater., 272-276, p. 2375. , 10.1016/j.jmmm.2003.12.1010Wang, H.B., Altounian, Z., Ryan, D.H., (2004) J. Phys.: Condens. Matter, 16, p. 3053. , 10.1088/0953-8984/16/18/006Zhang, T., Chen, Y., Tang, Y., Tu, M., (2006) J. Alloys Compd., 422, p. 25. , 10.1016/j.jallcom.2005.11.077Campoy, J.C.P., Plaza, E.J.R., Nascimento, F.C., Coelho, A.A., Pereira, M.C., Fabris, J.D., Raposo, M.T., Gama, S., (2007) J. Magn. Magn. Mater., 316, p. 368. , 10.1016/j.jmmm.2007.03.023Provenzano, V., Zhang, T., Shapiro, A., Chen, Y.G., Shull, R.D., (2008) IEEE Trans. Magn., 44 (11), p. 3048. , 10.1109/TMAG.2008.2002789Carvalho, A.M.G., Coelho, A.A., Von Ranke, P.J., Alves, C.S., (2011) J. Alloys Compd., 509, p. 3452. , 10.1016/j.jallcom.2010.12.088Pecharsky, A.O., Gschneidner Jr., K.A., Pecharsky, V.K., (2003) J. Appl. Phys., 93 (8), p. 4722. , 10.1063/1.1558210Alves, C.S., Gama, S., Coelho, A.D.A., Plaza, E.J.R., Magnus Carvalho G, A., Cardoso, L.P., Persiano, A.C., (2004) Mater. Res., 7 (4), p. 535. , 10.1590/S1516-14392004000400005Belo, J.H., Pereira, A.M., Ventura, J., Oliveira, G.N.P., Araújo, J.P., Tavares, P.B., Fernandes, L., Ibarra, M.R., (2012) J. Alloys Compd., 529, p. 89. , 10.1016/j.jallcom.2012.02.164Pecharsky, V.K., Gschneidner Jr., K.A., (1997) J. Alloys Compd., 260, p. 98. , 10.1016/S0925-8388(97)00143-6Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Appl. Phys. Lett., 70 (24), p. 3299. , 10.1063/1.119206Zhang, T., Chen, Y., Tang, Y., (2007) J. Phys. D: Appl. Phys., 40, p. 5778. , 10.1088/0022-3727/40/18/040Manekar, M., Roy, S.B., (2011) J. Phys. D: Appl. Phys., 44, p. 242001. , 10.1088/0022-3727/44/24/242001Katagiri, K., Nakamura, K., Wada, H., (2013) J. Alloys Compd., 553, p. 286. , 10.1016/j.jallcom.2012.11.127Von Ranke, P.J., Nóbrega, E.P., De Oliveira, I.G., Gomes, A.M., Sarthour, R.S., (2001) Phys. Rev. B, 63, p. 184406. , 10.1103/PhysRevB.63.18440

    Exchange-bias-like Effect In Pr0.75tb0.25al 2 And Pr0.7tb0.3al2 Samples

    No full text
    The magnetic behavior of pseudobinary Pr0.7Tb 0.3Al2 and Pr0.75Tb0.25Al 2 compounds was studied, and a predominant ferrimagnetic ordering was observed. Noteworthy characteristics such as negative magnetization, compensation points and exchange-bias-like (EB-like) effect were found. This EB-like effect was observed at temperatures below the compensation points. The effect is somewhat different from the one already studied in similar systems combining light and heavy rare earths. The results indicate that the EB-like effect characteristics are related to the conduction electron magnetic polarization and an induced unidirectional anisotropy present in these compounds. © 2013 Elsevier B.V. All rights reserved.339610Williams, H.J., Wernick, J.H., Sherwood, R.C., Nesbitt, E.A., (1962) Journal of the Physical Society of Japan, 17, p. 91Swift, W.M., Wallace, W.E., (1968) Journal of Physics and Chemistry of Solids, 29, p. 2053Oesterreicher, H., (1974) Inorganic Chemistry, 13, p. 2807Bouziane, K., Carboni, C., Morrison, C., (2008) Journal of Physics: Condensed Matter, 20, p. 025218Levin, E.M., Pecharsky, V.K., Gschneidner, K.A., (2001) Journal of Applied Physics, 90, p. 6255Inoue, T., Sankar, S.G., Craig, R.S., Wallace, W.E., Gschneidner, K.A., (1977) Journal of Physics and Chemistry of Solids, 38, p. 487Holden, T.M., Buyers, W.J.L., Purwins, H.G., (1984) Journal of Physics F: Metal Physics, 14, p. 2701Carvalho, A.M.G., Garcia, F., De Sousa, V.S.R., Von Ranke, P.J., Rocco, D.L., Loula, G.D., De Carvalho, E.J., Gandra, F.C.G., (2009) Journal of Magnetism and Magnetic Materials, 321, p. 3014De Sousa, V.S.R., Carvalho, A.M.G., Plaza, E.J.R., Alho, B.P., Tedesco, J.C.G., Coelho, A.A., De Oliveira, N.A., Von Ranke, P.J., (2011) Journal of Magnetism and Magnetic Materials, 323, p. 794Tishin, A.M., Spichkin, Y.I., (2003) The Magnetocaloric Effect and Its Applications, , (IoP - Institute of Physics Publishing UKRoss Jr., R.G., (2001) Cryocoolers, , (Kluwer Academic Publishers/Plenum Publishers New York, USANogués, J., Schuller, I.K., (1999) Journal of Magnetism and Magnetic Materials, 192, p. 203Koga, S., Narita, K., (1982) Journal of Applied Physics, 53, p. 1655Lacour, D., Jaffres, H., Dau, F.N.V., Petroff, F., Vaures, A., Humbert, J., (2002) Journal of Applied Physics, 91, p. 4655Daughton, J., Brown, J., Chen, E., Beech, R., Pohm, A., Kude, W., (1994) IEEE Transactions on Magnetics, 30, p. 4608Lenz, J., Edelstein, S., (2006) IEEE Sensors Journal, 6, p. 631Tsang, C., Fontana, R.E., Lin, T., Heim, D.E., Speriosu, V.S., Gurney, B.A., Williams, M.L., (1994) IEEE Transactions on Magnetics, 30, p. 3801Tsang, C., (1984) Journal of Applied Physics, 55, p. 2226Jensen, J., Mackintosh, A.R., (1991) Rare Earth Magnetism: Structures and Excitations, , Oxford University Press OxfordPurwins, H.G., Leson, A.A., (1990) Advances in Physics, 39, p. 309Swift, W.M., Wallace, W.E., (1971) Journal of Solid State Chemistry, 3, p. 180P.D. Kulkarni, S. Venkatesh, A. Thamizhavel, V.C. Rakhecha, S. Ramakrishnan, A.K. Grover, arXiv:0812.0929, (2008)Kulkarni, P.D., Thamizhavel, A., Rakhecha, V.C., Nigam, A.K., Paulose, P.L., Ramakrishnan, S., Grover, A.K., (2009) EPL (Europhysics Letters), 86, p. 47003Kulkarni, P.D., Dhar, S.K., Provino, A., Manfrinetti, P., Grover, A.K., (2010) Physical Review B, 82, p. 144411Von Ranke, P.J., De Oliveira, N.A., Alho, B.P., De Sousa, V.S.R., Plaza, E.J.R., Carvalho, A.M.G., (2010) Journal of Magnetism and Magnetic Materials, 322, p. 84Heimann, J., Kaczmarska, K., Kwapulińska, E., Ślebarski, A., Chełkowski, A., (1982) Journal of Magnetism and Magnetic Materials, 27, p. 187Lee, E.W., Montenegro, J.F.D., (1981) Journal of Magnetism and Magnetic Materials, 22, p. 282Webb, D.J., Marshall, A.F., Sun, Z., Geballe, T.H., White, R.M., (1988) IEEE Transactions on Magnetics, 24, p. 588Ovchinnikov, Y., Dyugaev, A., Fulde, P., Kresin, V., (1997) JETP Letters, 66, p. 195Ehrenreich, H., Seitz, F., Turnbull, D., (1969) Solid State Physics: Advances in Research and Applications, , Academic Press New YorkNereson, N., Olsen, C., Arnold, G., (1968) Journal of Applied Physics, 39, p. 4605Olsen, C.E., Arnold, G., Nereson, N., (1967) Journal of Applied Physics, 38, p. 1395Taylor, R.H., Coles, B.R., (1975) Journal of Physics F: Metal Physics, 5, p. 121Kwapulińska, E., Kaczmarska, K., Chelkowski, A., (1980) Acta Physica Polonica A, 58, p. 55

    Photothermally Modulated Magnetic Resonance Applied To The Study Of The Magnetic Phase Transition In Gadolinium Thin Films

    No full text
    We explore the photothermally modulated magnetic resonance technique to investigate gadolinium thin films deposited on fused quartz substrate, as a function of thickness and thermal treatment, around the magnetic phase transition temperature. It has been observed that the maximum amplitude of the photothermally modulated magnetic resonance (PM-MR) signal takes place near the phase transition temperature, similarly to the magnetocaloric effect, for which Gd has been the prototype material. The reason is that both depend on the temperature derivative of the magnetization, which maximizes at the phase transition. Besides, there is a narrowing of transition with thermal treatment, confirming that thermal treatment stabilizes the film structure. For frequency scan measurements, the heat diffusion in a two-layer system was considered, and a depth profile study was carried out in order to investigate heterogeneities along the film thickness. From the PM-MR response as a function of the modulation frequency it was possible to estimate the thermal properties of the Gd film. Magnetization, X-ray and electron spin resonance measurements were used to complement the analysis and support the conclusions. © 2011 Elsevier B.V. All rights reserved.520936343640Ohring, M., (1991) The Materials Science of Thin Films, , Academic Press New YorkPrutton, M., (1964) Thin Ferromagnetic Films, , Butterworth WashingtonPoole, Jr.C.P., (1983) Electron Spin Resonance, , John Wiley & Sons New YorkAbragam, A., Bleaney, B., (1986) Electron Paramagnetic Resonance of Transitions Ions, , Dover New YorkOrth, T., Netelmann, U., Pelzl, J., (1988) Appl. Phys. Lett., 53, p. 1979Romano, J.A., Mansanares, A.M., Da Silva, E.C., Vargas, H., (1994) J. Phys., 4, pp. C7-667Meckenstock, R., Spodding, D., Pelzl, J., (2002) J. Magn. Mater., 240, p. 83Pecharsky, V.K., Gschneider, Jr.K.A., (1997) Phys. Rev. Lett., 78, p. 4494Foldeaki, M., Schnelle, W., Gmelin, E., Bernard, P., Koszegi, B., Giguere, A., Chahine, R., Bose, T.K., (1997) J. Appl. Phys., 82, p. 309Tishin, A.M., Spichkin, Y.I., (2003) The Magnetocaloric Effect and Its Applications, , Institute of Physics Series in Condensed Matter Physics BristolMorelli, D.T., Mance, A.M., Mantese, J.M., Micheli, A.L., (1996) J. Appl. Phys., 79, p. 373Gadioli, G.Z., Rouxinol, F.P., Gelamo, R.V., Dos Santos, A.O., Cardoso, L.P., De Moraes, M.A.B., (2008) J. Appl. Phys., 103, p. 093916Recarte, V., Pérez-Landazábal, J.I., Sánchez- Alárcos, V., Chemenko, V.A., Ohtsuka, M., (2009) Appl. Phys. Lett., 95, p. 141908Solzi, M., Pernechele, C., Ghidini, M., Natali, M., Bolzan, M., (2010) J. Magn. Magn. Mater., 322, p. 1565Pelzl, J., Netzelmann, U., (1989) Topics in Currents Physics: Photoacoustic, Photothermal and Photochemical Processes at Surfaces and in Thin Films, p. 313. , P. Hess, Springer-Verlag BerlinGuimarães, A.O., Soffner, M.E., Mansanares, A.M., Coellho, A.A., Magnus, A., Carvalho, G., Pires, M.J.M., Da Silva, E.C., (2009) Phys. Rev. B, 80, p. 134406Guimarães, A.O., Soffner, M.E., Mansanares, A.M., Coellho, A.A., Magnus, A., Carvalho, G., Pires, M.J.M., Da Silva, E.C., (2010) J. Appl. Phys., 107, p. 073524Soffner, M.E., Tedesco, J.C.G., Mansanares, A.M., Gadioli, G.Z., Rouxinol, F.P., De Moraes, M.A.B., Da Silva, E.C., (2010) J. Phys. Conf. Ser., 214, p. 012092Nakamura, O., Baba, K., Ishii, H., Takeda, T., (1988) J. Appl. Phys., 64, p. 3614Farle, M., Baberschke, K., (1987) Phys. Rev. Lett., 58, p. 511Bugardt, P., Seehra, M.S., (1977) Phys. Rev. B, 16, p. 1802Chiba, Y., Nakamura, A., (1970) J. Phys. Soc. Jpn, 29, p. 792Freitas, L.R., Mansanares, A.M., Da Silva, E.C., (2003) Rev. Sci. Instrum., 74, p. 735Glorieux, C., Thoen, J., Bednarz, G., White, M.A., Geldart, D.J.W., (1995) Phys. Rev. B, 52, p. 12770Lide, D.R., (1991) CRC Handbook of Chemistry and Physics, , 72nd ed. CRC PressPetrakian, J.P., Ahmed Mokhtar, N., Fraisse, R., (1977) J. Phys. F: Met. Phys., 7, p. 2431Almond, D.P., Patel, P.M., (1996) Photothermal Science and Techniques, , Chapman & Hall LondonTouloukian, Y.S., Buyco, E.H., (1970) Thermophysical Properties of Matter, , IFI/Plenum New York-Washingto

    Investigation On The Magnetocaloric Effect In (gd,pr)al2 Solid Solutions

    No full text
    A theoretical and experimental investigation on the magnetocaloric properties of the rare earth pseudo-binary compounds Gd1-nPr nAl2 is presented. The calculated isothermal entropy and adiabatic temperature changes under magnetic field variations from 0 to 2 T and from 0 to 5 T are in good agreement with the experimental data. For the Pr-concentrations n=0.25, 0.5 and 0.75 the experimental data present an inverse magnetocaloric effect which was theoretically predicted and associated with the competition between the opposite magnetizations of the Gd and Pr sublattices. The two-sublattice Hamiltonian used in the calculations takes into account the crystal field, exchange and Zeeman interactions. © 2010 Elsevier B.V. All rights reserved.3236794798Pecharsky, V.K., Gschneidner, Jr.K.A., (1997) Phys. Rev. Lett., 78, p. 4494Brck, E., (2005) J. Phys. D, (38), p. 381Brck, E., (2007) Handbook of Magnetism and Magnetic Materials, 17, pp. 235-291Gschneidner, Jr.K.A., Pecharsky, V.K., (2008) Int. J. Refrig., 31, p. 945Gschneidner, Jr.K.A., Pecharsky, V.K., Tsokol, A.O., (2005) Rep. Prog. Phys., 68, p. 1479Von Ranke, P.J., Nbrega, E.P., De Oliveira, I.G., Gomes, A.M., Sarthour, R.S., (2001) Phys. Rev. B, 63, p. 184406De Oliveira, N.A., Von Ranke, P.J., Tovar Costa, M.V., Troper, A., (2002) Phys. Rev. B, 66, p. 094402De Oliveira, N.A., Von Ranke, P.J., (2010) Phys. Rep., 489, p. 89Von Ranke, P.J., De Oliveira, N.A., Alho, B.P., Plaza, E.J.R., De Sousa, V.S.R., Caron, L., Reis, M.S., (2009) J. Phys.: Condens. Matter., 21, p. 056004Zimm, C.B., Barclay, J.A., Johanson, W.R., (1984) J. Appl. Phys., 55, p. 2609Liu, H., Wang, D., Tang, S., Cao, Q., Tang, T., Gu, B., Du, Y., (2002) J. Alloys Compd., 346, p. 314Bohigas, X., Tejada, J., Torres, F., Arnaudas, J., Joven, E., Moral, A., (2002) Appl. Phys. Lett., 81, p. 2427Xiong, D.K., Li, D., Liu, W., Zhang, Z.D., (2005) Physica B, 369, p. 273Xiong, D.K., Li, D., Ren, W.J., Li, J., Liu, W., Zhang, Z.D., (2006) J. Alloys Compd., 413, p. 7Khan, M., Gschneidner, Jr.K.A., Pecharsky, V.K., (2010) J. Appl. Phys., 107, pp. 09A904Williams, H.J., Wernick, J.H., Sherwood, R.C., Nesbitt, E.A., (1961) J. Phys. Soc. Jpn., 17 (SUPPL. B-I), p. 91Magnus, A., Carvalho, G., Garcia, F., De Sousa, V.S.R., Von Ranke, P.J., Rocco, D.L., Loula, G.D., Gandra, F.C.G., (2009) J. Magn. Magn. Mater., 321, p. 3014Johnston, R.L., Hoffmann, R., (1992) Z. Anorg. Allg. Chem., 616, p. 105Lea, K., Leask, M., Wolf, W., (1962) J. Phys. Chem. Solids, 23, p. 1382Stevens, K.W.H., (1952) Proc. Phys. Soc. Sect. A, 65, p. 209Purwins, H.G., Leson, A., (1990) Adv. Phys., 39, p. 309Kulkarni, P.D., Thamizhavel, A., Rakhecha, V.C., Nigam, A.K., Paulose, P.L., Ramakrishnan, S., Grover, A.K., (2009) Europhys. Lett., 86, p. 4700

    Analysis of the crystallographic and magnetic structures of the Tb0.1Pr0.9Al2 and Tb0.25Pr0.75Al2 magnetocaloric compounds by means of neutron scattering

    No full text
    Neutron powder diffraction and inelastic neutron scattering data were used to simulate and understand the magnetization and heat capacity curves of the pseudobinary Tbx Pr1 amp; 8722;x Al2, with x 0.10 and 0.25, as a function of temperature. From the Rietveld analysis, we concluded that no crystallographic transition occurs in these samples, and the high symmetry of the magnetic structure was confirmed. Moreover, the different contributions from the reflection planes could be related to the known exchange bias like effect characteristic for the x 0.25 sample, also suggesting the existence of some rearrangement of the magnetic moments or even the presence of spin frustration in this system. Finally, the obtained set of theoretical parameters using the mean field approach for the two systems consisting of two sublattices allowed the experimental data to be described and to explain their physical behaviors. The ensemble of our results leads us to affirm that the quadrupolar interactions as well as an existence of some rearrangement of the magnetic moments or a frustration play an important role in the strong unidirectional anisotropy and the exchange bias like effect observed in this pseudobinary syste
    corecore