8 research outputs found

    The relationship between mid-infrared and sub-millimetre variability of deeply embedded protostars

    Get PDF
    Funding: The contribution of CCP was funded by a Leverhulme Trust Research Project Grant. AS is supported by the STFC grant no. ST/R000824/1. GJH is supported by general grant 11773002 awarded by the National Science Foundation of China. DJ is supported by NRC Canada and by an NSERC Discovery Grant. J-EL and GB are supported by the Basic Science Research Program through the National Research Foundation of Korea (grant no. NRF-2018R1A2B6003423) and the Korea Astronomy and Space Science Institute under the R&D program supervised by the Ministry of Science, ICT and Future Planning. G.B. was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-2017H1A2A1043046-Global Ph.D.Fellowship Program).We study the relationship between the mid-infrared (mid-IR) and sub-millimetre (sub-mm) variability of deeply embedded protostars using the multi-epoch data from the Wide-field Infrared Survey Explorer (WISE/NEOWISE) and the ongoing James Clerk Maxwell Telescope (JCMT) Transient Survey. Our search for signs of stochastic (random) and/or secular (roughly monotonic in time) variability in a sample of 59 young stellar objects (YSOs) revealed that 35 are variable in at least one of the two surveys. This variability is dominated by secular changes. Of those objects with secular variability, 14 objects (⁠22 per cent of the sample) show correlated secular variability over mid-IR and sub-mm wavelengths. Variable accretion is the likely mechanism responsible for this type of variability. Fluxes of YSOs that vary in both wavelengths follow a relation of log10F4.6(t) = ηlog10F850(t) between the mid-IR and sub-mm, with η = 5.53 ± 0.29. This relationship arises from the fact that sub-mm fluxes respond to the dust temperature in the larger envelope whereas the mid-IR emissivity is more directly proportional to the accretion luminosity. The exact scaling relation, however, depends on the structure of the envelope, the importance of viscous heating in the disc, and dust opacity laws.Publisher PDFPeer reviewe

    The JCMT Transient Survey : stochastic and secular variability of protostars and disks in the submillimeter region observed over 18 months

    Get PDF
    We analyze results from the first 18 months of monthly submillimeter monitoring of eight star-forming regions in the JCMT Transient Survey. In our search for stochastic variability in 1643 bright peaks, only the previously identified source, EC 53, shows behavior well above the expected measurement uncertainty. Another four sources—two disks and two protostars—show moderately enhanced standard deviations in brightness, as expected for stochastic variables. For the two protostars, this apparent variability is the result of single epochs that are much brighter than the mean. In our search for secular brightness variations that are linear in time, we measure the fractional brightness change per year for 150 bright peaks, 50 of which are protostellar. The ensemble distribution of slopes is well fit by a normal distribution with σ ~ 0.023. Most sources are not rapidly brightening or fading at submillimeter wavelengths. Comparison against time-randomized realizations shows that the width of the distribution is dominated by the uncertainty in the individual brightness measurements of the sources. A toy model for secular variability reveals that an underlying Gaussian distribution of linear fractional brightness change σ = 0.005 would be unobservable in the present sample, whereas an underlying distribution with σ = 0.02 is ruled out. Five protostellar sources, 10% of the protostellar sample, are found to have robust secular measures deviating from a constant flux. The sensitivity to secular brightness variations will improve significantly with a sample over a longer time duration, with an improvement by factor of two expected by the conclusion of our 36 month survey.Publisher PDFPeer reviewe

    Young Faithful: The eruptions of EC 53 as it cycles through filling and draining the inner disk

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Astronomical Society via the DOI in this recordWhile young stellar objects sometimes undergo bursts of accretion, these bursts usually occur sporadically, making them challenging to study observationally and to explain theoretically. We build a schematic description of cyclical bursts of the young stellar object EC 53 using near-IR and sub-mm monitoring obtained over six cycles, each lasting ⇡ 530 days. EC 53 brightens over 0.12 yr by 0.3 mag at 850 µm, 2 mag at 3.35 µm, and 1.5 mag at near-IR wavelengths, to a maximum luminosity consistent with an accretion rate of ⇠ 8⇥106 M yr1. The emission then decays with an e-folding timescale of ⇡ 0.74 yr until the accretion rate is ⇠ 1⇥106 M yr1. The next eruption then occurs, likely triggered by the buildup of ⇠ 5 ⇥ 106 M of mass in the inner disk, enough that it becomes unstable and drains onto the star. Just before outburst, when the disk is almost replenished, the near-IR colors become redder, indicating an increase in the geometrical height of the disk by this mass buildup. The reddening disappears soon after the initial burst, as much of the mass is drained from the disk. We quantify physical parameters related to the accretion process in EC 53 by assuming an a-disk formulation, constrained by the observed disk properties and accretion rate. While we can only speculate about the possible trigger for these faithful eruptions, we hope that our quantified schematic will motivate theorists to test the hypothesized mechanisms that could cause the cyclical buildup and draining of mass in the inner disk

    The JCMT Transient Survey : Single Epoch Transients and Variability of Faint Sources

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/Short-duration flares at millimeter wavelengths provide unique insights into the strongest magnetic reconnection events in stellar coronae, and combine with longer-term variability to introduce complications to next-generation cosmology surveys. We analyze 5.5 years of JCMT Transient Survey 850 micron submillimeter monitoring observations toward eight Gould Belt star-forming regions to search for evidence of transient events or long-duration variability from faint sources. The eight regions (30 arcmin diameter fields), including ~1200 infrared-selected YSOs, have been observed on average 47 times with integrations of approximately half an hour, or one day total spread over 5.5 years. Within this large data set, only two robust faint source detections are recovered: JW 566 in OMC 2/3 and MGM12 2864 in NGC 2023. JW 566, a Class II TTauri binary system previously identified as an extraordinary submillimeter flare, remains unique, the only clear single-epoch transient detection in this sample with a flare eight times bright than our ~4.5 sigma detection threshold of 55 mJy/beam. The lack of additional recovered flares intermediate between JW 566 and our detection limit is puzzling, if smaller events are more common than larger events. In contrast, the other submillimeter variable identified in our analysis, Source 2864, is highly variable on all observed timescales. Although Source 2864 is occasionally classified as a YSO, the source is most likely a blazar. The degree of variability across the electromagnetic spectrum may be used to aid source classification.Peer reviewe

    The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.We analyze results from the first 18 months of monthly submillimeter monitoring of eight star-forming regions in the JCMT Transient Survey. In our search for stochastic variability in 1643 bright peaks, only the previously identified source, EC 53, shows behavior well above the expected measurement uncertainty. Another four sources—two disks and two protostars—show moderately enhanced standard deviations in brightness, as expected for stochastic variables. For the two protostars, this apparent variability is the result of single epochs that are much brighter than the mean. In our search for secular brightness variations that are linear in time, we measure the fractional brightness change per year for 150 bright peaks, 50 of which are protostellar. The ensemble distribution of slopes is well fit by a normal distribution with σ ~ 0.023. Most sources are not rapidly brightening or fading at submillimeter wavelengths. Comparison against time-randomized realizations shows that the width of the distribution is dominated by the uncertainty in the individual brightness measurements of the sources. A toy model for secular variability reveals that an underlying Gaussian distribution of linear fractional brightness change σ = 0.005 would be unobservable in the present sample, whereas an underlying distribution with σ = 0.02 is ruled out. Five protostellar sources, 10% of the protostellar sample, are found to have robust secular measures deviating from a constant flux. The sensitivity to secular brightness variations will improve significantly with a sample over a longer time duration, with an improvement by factor of two expected by the conclusion of our 36 month survey.The JCMT is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan, Academia Sinica Institute of Astronomy and Astrophysics, the Korea Astronomy and Space Science Institute, the National Astronomical Observatories of China and the Chinese Academy of Sciences (Grant No. XDB09000000), with additional funding support from the Science and Technology Facilities Council of the United Kingdom and participating universities in the United Kingdom and Canada. The identification number for the JCMT Transient Survey under which the SCUBA-2 data used in this paper can be found is M16AL001. The authors thank the JCMT staff for their support of the GBS team in data collection and reduction efforts. The Starlink software (Currie et al. 2014) is supported by the East Asian Observatory. This research has made use of NASA's Astrophysics Data System and the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. This research used the services of the Canadian Advanced Network for Astronomy Research (CANFAR), which in turn is supported by CANARIE, Compute Canada, University of Victoria, the National Research Council of Canada, and the Canadian Space Agency

    The JCMT Transient Survey : identifying submillimeter continuum variability over several year timescales using archival JCMT Gould Belt Survey observations

    Get PDF
    Investigating variability at the earliest stages of low-mass star formation is fundamental in understanding how a protostar assembles mass. While many simulations of protostellar disks predict non-steady accretion onto protostars, deeper investigation requires robust observational constraints on the frequency and amplitude of variability events characterized across the observable SED. In this study, we develop methods to robustly analyze repeated observations of an area of the sky for submillimeter variability in order to determine constraints on the magnitude and frequency of deeply embedded protostars. We compare 850 μm JCMT Transient Survey data with archival JCMT Gould Belt Survey data to investigate variability over 2–4 year timescales. Out of 175 bright, independent emission sources identified in the overlapping fields, we find seven variable candidates, five of which we classify as Strong, and the remaining two we classify as Extended to indicate that the latter are associated with larger-scale structure. For the Strong variable candidates, we find an average fractional peak brightness change per year of |4.0| % yr-1, with a standard deviation of 2.7 % yr-1. In total, 7% of the protostars associated with 850 μm emission in our sample show signs of variability. Four of the five Strong sources are associated with a known protostar. The remaining source is a good follow-up target for an object that is anticipated to contain an enshrouded, deeply embedded protostar. In addition, we estimate the 850 μm periodicity of the submillimeter variable source, EC 53, to be 567 ± 32 days, based on the archival Gould Belt Survey data.PostprintPeer reviewe

    Dissecting the different components of the modest accretion bursts of the very young protostar HOPS 373

    Get PDF
    Observed changes in protostellar brightness can be complicated to interpret. In our JCMT~Transient monitoring survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30%30\% brightness increase at 850 μ\mum, caused by a factor of 1.8-3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-infrared and NEOWISE W1W1 and W2W2 emission is located along the blueshifted CO outflow, spatially offset by 3\sim3 to 44^{\prime\prime} from the SW component. The KK-band emission imaged by UKIRT shows a compact H2_2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the sub-mm lightcurve. The signal of continuum variability in KK-band and W2W2 is masked by stable H2_2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate infrared searches for variability of the youngest protostars.Comment: 29 pages, 14 figures, accepted for publication in Ap
    corecore