69,175 research outputs found
Mass-to-light ratios of ellipticals in LCDM
We use the mass-to-light gradients in early-type galaxies to infer the global
dark matter fraction, f_d=M_d/M_*, for these systems. We discuss implications
about the total star formation efficiency in dark-matter halos and show that
the trend of with mass produces virial mass-to-light ratios which
are consistent with semi-analitical models. Preliminary kurtosis analysis of
the quasi-constant M/L galaxies in Romanowsky et al. seems at odd with Dekel et
al. simulations.Comment: 5 pages, 4 figures. To appear in Proceedings of XXIst IAP Colloquium,
"Mass Profiles & Shapes of Cosmological Structures" (Paris, 4-9 July 2005),
eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP Sciences).
Figure enlarged with respect the proceeding format, minor changes.
Collaboration website at http://www.astro.rug.nl/~pns/pns_team.htm
Multivariate Hierarchical Frameworks for Modelling Delayed Reporting in Count Data
In many fields and applications count data can be subject to delayed
reporting. This is where the total count, such as the number of disease cases
contracted in a given week, may not be immediately available, instead arriving
in parts over time. For short term decision making, the statistical challenge
lies in predicting the total count based on any observed partial counts, along
with a robust quantification of uncertainty. In this article we discuss
previous approaches to modelling delayed reporting and present a multivariate
hierarchical framework where the count generating process and delay mechanism
are modelled simultaneously. Unlike other approaches, the framework can also be
easily adapted to allow for the presence of under-reporting in the final
observed count. To compare our approach with existing frameworks, one of which
we extend to potentially improve predictive performance, we present a case
study of reported dengue fever cases in Rio de Janeiro. Based on both
within-sample and out-of-sample posterior predictive model checking and
arguments of interpretability, adaptability, and computational efficiency, we
discuss the advantages and disadvantages of each modelling framework.Comment: Biometrics (2019
Assessment of available anatomical characters for linking living mammals to fossil taxa in phylogenetic analyses
ORCID: 0000-0003-4919-8655© 2016 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The file attached is the published version of the article
Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short-term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short-term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill-coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short-term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill-coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high-elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high-temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations
Multiple morbidities in companion dogs: a novel model for investigating age-related disease
The proportion of men and women surviving over 65 years has been steadily increasing over the last century. In their later years, many of these individuals are afflicted with multiple chronic conditions, placing increasing pressure on healthcare systems. The accumulation of multiple health problems with advanced age is well documented, yet the causes are poorly understood. Animal models have long been employed in attempts to elucidate these complex mechanisms with limited success. Recently, the domestic dog has been proposed as a promising model of human aging for several reasons. Mean lifespan shows twofold variation across dog breeds. In addition, dogs closely share the environments of their owners, and substantial veterinary resources are dedicated to comprehensive diagnosis of conditions in dogs. However, while dogs are therefore useful for studying multimorbidity, little is known about how aging influences the accumulation of multiple concurrent disease conditions across dog breeds. The current study examines how age, body weight, and breed contribute to variation in multimorbidity in over 2,000 companion dogs visiting private veterinary clinics in England. In common with humans, we find that the number of diagnoses increases significantly with age in dogs. However, we find no significant weight or breed effects on morbidity number. This surprising result reveals that while breeds may vary in their average longevity and causes of death, their age-related trajectories of morbidities differ little, suggesting that age of onset of disease may be the source of variation in lifespan across breeds. Future studies with increased sample sizes and longitudinal monitoring may help us discern more breed-specific patterns in morbidity. Overall, the large increase in multimorbidity seen with age in dogs mirrors that seen in humans and lends even more credence to the value of companion dogs as models for human morbidity and mortality
Fluctuation characteristics of the TCV snowflake divertor measured with high speed visible imaging
Tangentially viewing fast camera footage of the low-field side snowflake
minus divertor in TCV is analysed across a four point scan in which the
proximity of the two X-points is varied systematically. The motion of
structures observed in the post- processed movie shows two distinct regions of
the camera frame exhibiting differing patterns. One type of motion in the outer
scrape-off layer remains present throughout the scan whilst the other, apparent
in the inner scrape-off layer between the two nulls, becomes increasingly
significant as the X-points contract towards one another. The spatial structure
of the fluctuations in both regions is shown to conform to the equilibrium
magnetic field. When the X-point gap is wide the fluctuations measured in the
region between the X-points show a similar structure to the fluctuations
observed above the null region, remaining coherent for multiple toroidal turns
of the magnetic field and indicating a physical connectivity of the
fluctuations between the upstream and downstream regions. When the X-point gap
is small the fluctuations in the inner scrape-off layer between the nulls are
decorrelated from fluctuations upstream, indicating local production of
filamentary structures. The motion of filaments in the inter-null region
differs, with filaments showing a dominantly poloidal motion along magnetic
flux surfaces when the X-point gap is large, compared to a dominantly radial
motion across flux-surfaces when the gap is small. This demonstrates an
enhancement to cross-field tranport between the nulls of the TCV low-field-side
snowflake minus when the gap between the nulls is small.Comment: Accepted for publication in Plasma Physics and Controlled Fusio
- …