17 research outputs found
Aspirin Use for the Primary Prevention of Myocardial Infarction Among Men in North Carolina, 2013
IntroductionThe US Preventive Services Task Force recommends aspirin use for men aged 45 to 79, when the potential benefit of preventing myocardial infarctions outweighs the potential harm of gastrointestinal hemorrhage. We determined prevalence and predictors of aspirin use for primary prevention of myocardial infarction vis-à-vis risk among men aged 45 to 79 in North Carolina.MethodsThe study used data for men aged 45 to 79 without contraindications to aspirin use or a history of cardiovascular disease from the 2013 North Carolina Behavioral Risk Factor Surveillance System survey. Stratification by risk of myocardial infarction was based on history of diabetes, high cholesterol, high blood pressure, and smoking. Analyses were performed in Stata version 13.0 (StataCorp LP); survey commands were used to account for complex sampling design.ResultsMost respondents, 74.2% (95% confidence interval [CI], 71.2%–77.0%), had at least one risk factor for myocardial infarction. Prevalence of aspirin use among respondents with risk factors was 44.8% (95% CI, 41.0–48.5) and was significantly higher than the prevalence among respondents without risk factors (prevalence ratio: 1.44 [95% CI, 1.17–1.78]). No significant linear dose (number of risk factors)–response (taking aspirin) relationship was found (P for trend = .25). Older age predicted (P = .03) aspirin use among respondents with at least one myocardial infarction risk factor.ConclusionMost men aged 45 to 79 in North Carolina have at least one risk factor for myocardial infarction, but less than half use aspirin. Interventions aimed at boosting aspirin use are needed among at-risk men in North Carolina
Exploring links between greenspace and sudden unexpected death: A spatial analysis
Greenspace has been increasingly recognized as having numerous health benefits. However, its effects are unknown concerning sudden unexpected death (SUD), commonly referred to as sudden cardiac death, which constitutes a large proportion of mortality in the United States. Because greenspace can promote physical activity, reduce stress and buffer air pollutants, it may have beneficial effects for people at risk of SUD, such as those with heart disease, hypertension, and diabetes mellitus. Using several spatial techniques, this study explored the relationship between SUD and greenspace. We adjudicated 396 SUD cases that occurred from March 2013 to February 2015 among reports from emergency medical services (EMS) that attended out-of-hospital deaths in Wake County (central North Carolina, USA). We measured multiple greenspace metrics in each census tract, including the percentages of forest, grassland, average tree canopy, tree canopy diversity, near-road tree canopy and greenway density. The associations between SUD incidence and these greenspace metrics were examined using Poisson regression (non-spatial) and Bayesian spatial models. The results from both models indicated that SUD incidence was inversely associated with both greenway density (adjusted risk ratio [RR] = 0.82, 95% credible/ confidence interval [CI]: 0.69–0.97) and the percentage of forest (adjusted RR = 0.90, 95% CI: 0.81–0.99). These results suggest that increases in greenway density by 1 km/km2 and in forest by 10% were associated with a decrease in SUD risk of 18% and 10%, respectively. The inverse relationship was not observed between SUD incidence and other metrics, including grassland, average tree canopy, near-road tree canopy and tree canopy diversity. This study implies that greenspace, specifically greenways and forest, may have beneficial effects for people at risk of SUD. Further studies are needed to investigate potential causal relationships between greenspace and SUD, and potential mechanisms such as promoting physical activity and reducing stress
Lessons learned for surveillance system strengthening through capacity building and partnership engagement in post-Ebola Guinea, 2015–2019
The 2014–2016 Ebola outbreak in Guinea revealed systematic weaknesses in the existing disease surveillance system, which contributed to delayed detection, underreporting of cases, widespread transmission in Guinea and cross-border transmission to neighboring Sierra Leone and Liberia, leading to the largest Ebola epidemic ever recorded. Efforts to understand the epidemic's scale and distribution were hindered by problems with data completeness, accuracy, and reliability. In 2017, recognizing the importance and usefulness of surveillance data in making evidence-based decisions for the control of epidemic-prone diseases, the Guinean Ministry of Health (MoH) included surveillance strengthening as a priority activity in their post-Ebola transition plan and requested the support of partners to attain its objectives. The U.S. Centers for Disease Control and Prevention (US CDC) and four of its implementing partners—International Medical Corps, the International Organization for Migration, RTI International, and the World Health Organization—worked in collaboration with the Government of Guinea to strengthen the country's surveillance capacity, in alignment with the Global Health Security Agenda and International Health Regulations 2005 objectives for surveillance and reporting. This paper describes the main surveillance activities supported by US CDC and its partners between 2015 and 2019 and provides information on the strategies used and the impact of activities. It also discusses lessons learned for building sustainable capacity and infrastructure for disease surveillance and reporting in similar resource-limited settings
Emergency obstetrics knowledge and practical skills retention among medical students in Rwanda following a short training course
AbstractObjectiveTo describe rates of improved knowledge following a structured 2-day emergency obstetrics training course.MethodsQuantitative assessments to evaluate emergency obstetrics knowledge and practical skills were administered before, immediately after, and 3–9months following the training course for 65 final-year medical students at the National University of Rwanda. A survey was administered during the final assessment.ResultsIn total, 52 (80.0%) students demonstrated knowledge improvement after training. Fifty-seven (87.7%) students improved or maintained their scores from the post-training written test to the final assessment, and 32 (49.2%) retained practical skills. Twenty-one (32.3%) of the class demonstrated competency in both written and practical skills. According to multivariable logistic regression analysis, female gender was associated with overall competency (P=0.01), and use of the internet for academic purposes more than 3–5 times per week tended toward competency (P=0.11).ConclusionA 2-day emergency obstetrics training course increased knowledge among medical students. Because educational policies are tailored to address high rates of maternal mortality in resource-poor settings, workshops dedicated to emergency obstetrics should be promoted
Using safe, affordable and accessible non-steroidal anti-inflammatory drugs to reduce the number of HIV target cells in the blood and at the female genital tract
Emergency obstetrics knowledge and practical skills retention among medical students in Rwanda following a short training course
Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017–2018
International audienceBackgroundThe World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy.MethodsThis was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6–59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed.ResultsOf 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64–83%) in Nanoro, 76% (66–83%) in Gourcy, and 92% (84–96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75–89%) in Gourcy, 89% (81–94%) in Nanoro, and 97% (92–99%) in Niangoloko.No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation.ConclusionThe results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso
Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017–2018
Abstract
Background
The World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy.
Methods
This was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6–59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed.
Results
Of 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64–83%) in Nanoro, 76% (66–83%) in Gourcy, and 92% (84–96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75–89%) in Gourcy, 89% (81–94%) in Nanoro, and 97% (92–99%) in Niangoloko.
No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation.
Conclusion
The results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso.
Trial Registry Pan African Clinical Trial Registry Identifier: PACTR201708002499311.
Date of registration: 8/3/2017
https://pactr.samrc.ac.za/Search.aspx
</jats:sec
Implementation of DHIS2 for Disease Surveillance in Guinea: 2015–2020
A robust epidemic-prone disease surveillance system is a critical component of public health infrastructure and supports compliance with the International Health Regulations (IHR). One digital health platform that has been implemented in numerous low- and middle-income countries is the District Health Information System Version 2 (DHIS2). In 2015, in the wake of the Ebola epidemic, the Ministry of Health in Guinea established a strategic plan to strengthen its surveillance system, including adoption of DHIS2 as a health information system that could also capture surveillance data. In 2017, the DHIS2 platform for disease surveillance was piloted in two regions, with the aim of ensuring the timely availability of quality surveillance data for better prevention, detection, and response to epidemic-prone diseases. The success of the pilot prompted the national roll-out of DHIS2 for weekly aggregate disease surveillance starting in January 2018. In 2019, the country started to also use the DHIS2 Tracker to capture individual cases of epidemic-prone diseases. As of February 2020, for aggregate data, the national average timeliness of reporting was 72.2%, and average completeness 98.5%; however, the proportion of individual case reports filed was overall low and varied widely between diseases. While substantial progress has been made in implementation of DHIS2 in Guinea for use in surveillance of epidemic-prone diseases, much remains to be done to ensure long-term sustainability of the system. This paper describes the implementation and outcomes of DHIS2 as a digital health platform for disease surveillance in Guinea between 2015 and early 2020, highlighting lessons learned and recommendations related to the processes of planning and adoption, pilot testing in two regions, and scale up to national level.</jats:p
Implementation of DHIS2 for Disease Surveillance in Guinea: 2015–2020
A robust epidemic-prone disease surveillance system is a critical component of public health infrastructure and supports compliance with the International Health Regulations (IHR). One digital health platform that has been implemented in numerous low- and middle-income countries is the District Health Information System Version 2 (DHIS2). In 2015, in the wake of the Ebola epidemic, the Ministry of Health in Guinea established a strategic plan to strengthen its surveillance system, including adoption of DHIS2 as a health information system that could also capture surveillance data. In 2017, the DHIS2 platform for disease surveillance was piloted in two regions, with the aim of ensuring the timely availability of quality surveillance data for better prevention, detection, and response to epidemic-prone diseases. The success of the pilot prompted the national roll-out of DHIS2 for weekly aggregate disease surveillance starting in January 2018. In 2019, the country started to also use the DHIS2 Tracker to capture individual cases of epidemic-prone diseases. As of February 2020, for aggregate data, the national average timeliness of reporting was 72.2%, and average completeness 98.5%; however, the proportion of individual case reports filed was overall low and varied widely between diseases. While substantial progress has been made in implementation of DHIS2 in Guinea for use in surveillance of epidemic-prone diseases, much remains to be done to ensure long-term sustainability of the system. This paper describes the implementation and outcomes of DHIS2 as a digital health platform for disease surveillance in Guinea between 2015 and early 2020, highlighting lessons learned and recommendations related to the processes of planning and adoption, pilot testing in two regions, and scale up to national level
