82 research outputs found

    The Challenges of Islamic Law and Muslim Societies

    Get PDF
    Abdulkader Tayob, ISIM Chair at the University of Nijmegen, talks with Muhammad Khalid Masud about his early career in Islamic studies, his sources of inspiration, his role as a Muslim intellectual, and his experiences in Nigeria and in the Netherlands

    The Politics and Pedagogy of Religion Education: Policies, Syllabi and Future Prospects

    Full text link
    Received 2 September 2018. Published online 30 September 2018.This article is based on the research supported in part by the National Research Foundation of South Africa (Reference number (UID) 85397)

    Challenges Facing Activists

    Get PDF
    The Rights at Home Project (R@H) held an Advanced Training Programme (ATP) in Zahle,Lebanon in June and July of 2004. The training focused on challenges and opportunities facing human rights activists in Muslim societies and communities. Trainers and trainees rose to the challenge in an inspiring way

    Transitional Islamic Identities in Southern Africa

    Get PDF
    Until recently, observers were generally unaware of the Islamic presence in southern Africa. It was assumed that Islam, in its southern spread, stopped somewhere around Lake Malawi. Little was known about the arrival of Muslims in the slave hulls of colonialism and during nineteenth-century international trade in sugar, gold and British manufactured goods. This obscurity changed dramatically when groups of Muslims joined anti-apartheid demonstrations in the 1980s, which the international media beamed across the world. Since then, Islam has taken its small but influential place in the media mosaic of southern Africa. In some cases Muslims are important social and political leaders in the region, emerging as champions of dramatic campaigns

    Experimental and numerical analysis of geometrical properties of laser metal deposited titanium

    Get PDF
    Abstract: Laser metal deposition (LMD) is a manufacturing process, which can be used to manufacture a complete, fully functional part by building it up layer-by-layer using the data from a Computer-Aided-Design (CAD) file. The layer-by-layer addition can also be used to rebuild worn-out sections of existing parts, as well as to deposit protective coatings to protect parts in surface engineering. The process involves laser heating a substrate, on which a metal powder is deposited. The powder solidifies, when mixed with the substrate, thereby creating a metallurgical bond. In order to produce parts with high geometrical tolerances and desirable material properties, the process parameters have to be carefully controlled. Since the LMD process requires the interaction of parameters, it is not always easy to predict the output geometry. In this paper, the laser metal deposition process was modelled in ANSYS Parametric- Design-Language (APDL), using a transient thermal analysis, in order to determine the geometrical properties of the clad, that is, the width and the height of the resulting clad. The simulated results were then compared experimentally by depositing Commercially Pure (CP) titanium powder onto a Ti-6Al-4V substrate, in order to verify the simulation. The varying parameter in the experimental process was the powder flow rate, which was varied between 0.5-2.5g/min. In addition to the geometrical properties, the microstructure, microhardness; and the porosity levels of the deposited clads were also analyzed, in order to better determine the clad quality and integrity. The model showed good agreement in predicting both the height and the width of the clads. Porosity was noticed in all the samples with the exception of the clad deposited at the lowest powder flow rate setting of 0.5 g/min. An increase in the powder flow rate also led to a smaller fusion zone, due to a lower laser-material interaction period, which was the result of the increase in the quantity of powder causing attenuation of the beam, and less laser power being absorbed by the substrate. The smaller fusion zone meant that the clads could not bond to the substrate properly, which led to the clad in the sample produced with the highest powder flow rate falling off the substrate. There was a significant increase in the microhardness of the clad zone, which was due to a combination of alloying with Ti- 6Al-4V and a change in the microstructure to an acicular alpha martensite microstructure; while the Heat-Affected-Zone (HAZ) in the substrate only showed a slight increase in microhardness

    Spread of Extensively Drug-Resistant Tuberculosis in KwaZulu-Natal Province, South Africa

    Get PDF
    Background In 2005 a cluster of 53 HIV-infected patients with extensively drug-resistant tuberculosis (XDR-TB) was detected in the Msinga sub-district, the catchment area for the Church of Scotland Hospital (CoSH) in Tugela Ferry, in KwaZulu-Natal province (KZN), South Africa. KZN is divided into 11 healthcare districts. We sought to determine the distribution of XDR TB cases in the province in relation to population density. Methods In this cross-sectional study, the KZN tuberculosis laboratory database was analysed. Results of all patients with a sputum culture positive for Mycobacterium tuberculosis from January 2006 to June 2007 were included. Drug-susceptibility test results for isoniazid, rifampicin, ethambutol, streptomycin, kanamycin and ofloxacin were available for all patients as well as the location of the hospital where their clinical diagnosis was made. Findings In total, 20858 patients attending one of 73 hospitals or their adjacent clinics had cultures positive for M. tuberculosis. Of these, 4170 (20%) were MDR-TB cases. Four hundred and forty three (11%) of the MDR tuberculosis cases displayed the XDR tuberculosis susceptibility profile. Only 1429 (34%) of the MDR-TB patients were seen at the provincial referral hospital for treatment. The proportion of XDR-TB amongst culture-confirmed cases was highest in the Msinga sub-district (19.6%), followed by the remaining part of the Umzinyati district (5.9%) and the other 10 districts (1.1%). The number of hospitals with at least one XDR-TB case increased from 18 (25%) to 58 (80%) during the study period. Interpretation XDR-TB is present throughout KZN. More than 65% of all diagnosed MDR-TB cases, including XDR-TB patients, were left untreated and likely remained in the community as a source of infection

    What Islam does not need is a pope!

    Get PDF

    Pulmonary function measures predict mortality differently in IPF versus combined pulmonary fibrosis and emphysema

    Full text link
    The composite physiologic index (CPI) was derived to represent the extent of fibrosis on high-resolution computed tomography (HRCT), adjusting for emphysema in patients with idiopathic pulmonary fibrosis (IPF). We hypothesised that longitudinal change in CPI would better predict mortality than forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) or diffusing capacity of the lung for carbon monoxide (DLCO) in all patients with IPF, and especially in those with combined pulmonary fibrosis and emphysema (CPFE). Cox proportional hazard models were performed on pulmonary function data from IPF patients at baseline (n=321), 6 months (n=211) and 12 months (n=144). Presence of CPFE was determined by HRCT. A five-point increase in CPI over 12 months predicted subsequent mortality (HR 2.1, p=0.004). At 12 months, a 10% relative decline in FVC, a 15% relative decline in DLCO or an absolute increase in CPI of five points all discriminated median survival by 2.1 to 2.2 yrs versus patients with lesser change. Half our cohort had CPFE. In patients with moderate/severe emphysema, only a 10% decline in FEV1 predicted mortality (HR 3.7, p=0.046). In IPF, a five-point increase in CPI over 12 months predicts mortality similarly to relative declines of 10% in FVC or 15% in DLCO. For CPFE patients, change in FEV1 was the best predictor of mortality.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91949/1/2011 ERJ - Pulmonary function measures predict mortality differently in IPF versus combined pulmonary fibrosis and emphysema.pd

    Endocrine Therapy Synergizes with SMAC Mimetics to Potentiate Antigen Presentation and Tumor Regression in Hormone Receptor-Positive Breast Cancer.

    Get PDF
    UNLABELLED: Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated β2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of β2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE: Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer
    corecore