60 research outputs found

    Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    Get PDF
    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic-inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation

    Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    Get PDF
    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus, strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formation of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. MamC cloning and purification were done at the University of Granada, Spain. Concepción Jiménez López acknowledges the support from the Spanish Government through Grant CGL2010-18274 and the program Salvador de Madariaga

    Directional Statistics of Preferential Orientations of Two Shapes in Their Aggregate and Its Application to Nanoparticle Aggregation

    Get PDF
    <p>Nanoscientists have long conjectured that adjacent nanoparticles aggregate with one another in certain preferential directions during a chemical synthesis of nanoparticles, which is referred to the oriented attachment. For the study of the oriented attachment, the microscopy and nanoscience communities have used dynamic electron microscopy for direct observations of nanoparticle aggregation and have been so far relying on manual and qualitative analysis of the observations. We propose a statistical approach for studying the oriented attachment quantitatively with multiple aggregation examples in imagery observations. We abstract an aggregation by an event of two primary geometric objects merging into a secondary geometric object. We use a point set representation to describe the geometric features of the primary objects and the secondary object, and formulated the alignment of two point sets to one point set to estimate the orientation angles of the primary objects in the secondary object. The estimated angles are used as data to estimate the probability distribution of the orientation angles and test important hypotheses statistically. The proposed approach was applied for our motivating example, which demonstrated that nanoparticles of certain geometries have indeed preferential orientations in their aggregates.</p

    Refocusing in Situ

    No full text

    Visualizing Electron Beam-Capping Ligand Reactions for Controlled Nanoparticle Imaging with Liquid Phase Transmission Electron Microscopy

    No full text
    Liquid phase transmission electron microscopy (LP-TEM) enables real-time imaging of nanoparticle self-assembly, formation, and etching with single nanometer resolution. Despite the importance of organic nanoparticle capping ligands in these processes, the effect of electron beam irradiation on surface bound and soluble capping ligands during LP-TEM imaging has not been investigated. Here we use correlative LP-TEM and fluorescence microscopy (FM) to demonstrate that polymeric nanoparticle ligands undergo competing crosslinking and chain scission reactions that non-monotonically modify ligand coverage over time. Branched polyethylenimine (BPEI) coated silver nanoparticles were imaged with dose-controlled LP-TEM followed by labeling their primary amine groups with fluorophores to visualize the local thickness of adsorbed capping ligands. FM images showed that free ligands crosslinked in the LP-TEM image area over imaging times of tens of seconds, enhancing local capping ligand coverage on nanoparticles and silicon nitride membranes. Nanoparticle surface ligands underwent chain scission over irradiation times of minutes to tens of minutes, which depleted surface ligands from the nanoparticle and silicon nitride surface. Conversely, solutions of only soluble capping ligand underwent successive crosslinking reactions with no chain scission, suggesting nanoparticles enhanced the chain scission reactions by acting as radiolysis hotspots. The addition of a hydroxyl radical scavenger, tert-butanol, eliminated chain scission reactions and slowed the progression of crosslinking reactions. These experiments have important implications for performing controlled and reproducible LP-TEM nanoparticle imaging as they demonstrate the electron beam can significantly alter ligand coverage on nanoparticles in a non-intuitive manner. They emphasize the need to understand and control the electron beam radiation chemistry of a given sample to avoid significant perturbations to the nanoparticle capping ligand chemistry, which are invisible in electron micrographs.<br /

    Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with In Situ Liquid Phase Transmission Electron Microscopy Synthesis

    No full text
    Colloidal synthesis of alloyed multimetallic nanocrystals with precise composition control remains a challenge and a critical missing link in theory-driven rational design of functional nanomaterials. Liquid phase transmission electron microscopy (LP-TEM) enables directly visualizing nanocrystal formation mechanisms that can inform discovery of design rules for colloidal multimetallic nanocrystal synthesis, but it remains unclear whether the salient chemistry of the flask synthesis is preserved in the extreme electron beam radiation environment during LPTEM. Here we demonstrate controlled in situ LP-TEM synthesis of alloyed AuCu nanoparticles while maintaining the molecular structure of electron beam sensitive metal thiolate precursor complexes. Ex situ flask synthesis experiments showed that nearly equimolar AuCu alloys formed from heteronuclear metal thiolate complexes, while gold-rich alloys formed in their absence. Systematic dose rate-controlled in situ LP-TEM synthesis experiments established a range of electron beam synthesis conditions that formed alloyed AuCu nanoparticles with similar alloy composition, random alloy structure, and particle size distribution shape as those from ex situ flask synthesis, indicating metal thiolate complexes were preserved under these conditions. Reaction kinetic simulations of radical-ligand reactions revealed that polymer capping ligands acted as effective hydroxyl radical scavengers during LP-TEM synthesis and prevented metal thiolate oxidation at low dose rates. In situ synthesis experiments and ex situ atomic scale imaging revealed that a key role of metal thiolate complexes was to prevent copper atom oxidation and facilitate formation of prenucleation cluster intermediates. This work demonstrates that complex ion precursor chemistry can be maintained during LP-TEM imaging, enabling probing nanocrystal formation mechanisms with LP-TEM under reaction conditions representative of ex situ flask synthesis
    corecore