3,033 research outputs found
Plasma Turbulence in the Local Bubble
Turbulence in the Local Bubble could play an important role in the
thermodynamics of the gas that is there. The best astronomical technique for
measuring turbulence in astrophysical plasmas is radio scintillation.
Measurements of the level of scattering to the nearby pulsar B0950+08 by
Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight
averaged turbulent intensity parameter is smaller than normal for two of them, but is completely nominal for
the third. This inconclusive status of affairs could be improved by
measurements and analysis of ``arcs'' in ``secondary spectra'' of pulsars.Comment: Submitted to Space Science Reviews as contribution to Proceedings of
ISSI (International Space Science Institute) workshop "From the Heliosphere
to the Local Bubble". Refereed version accepted for publicatio
Determination of spin and orbital magnetization in the ferromagnetic superconductor UCoGe
International audienceThe magnetism in the ferromagnetic superconductor UCoGe has been studied using a combination of magnetic Compton scattering, bulk magnetization, X-ray magnetic circular dichroism and electronic structure calculations, in order to determine the spin and orbital moments. The experimentally observed total spin moment, Ms, was found to be-0.24 ± 0.05 µB at 5 T. By comparison with the total moment of 0.16 ± 0.01 µB, the orbital moment, M l , was determined to be 0.40 ± 0.05 µB. The U and Co spin moments were determined to be antiparallel. We find that the U 5f electrons carry a spin moment of Us ≈-0.30 µB and that there is a Co spin moment of Cos ≈ 0.06 µB induced via hybridization. The ratio U l /Us, of −1.3 ± 0.3, shows the U moment to be itinerant. In order to ensure an accurate description of the properties of 5f systems, and to provide a critical test of the theoretical approaches, it is clearly necessary to obtain experimental data for both the spin and orbital moments, rather than just the total magnetic moment. This can be achieved simply by measuring the spin moment with magnetic Compton scattering and comparing this to the total moment from bulk magnetizatio
QED and String Theory
We analyze the D9-D9bar system in type IIB string theory using Dp-brane
probes. It is shown that the world-volume theory of the probe Dp-brane contains
two-dimensional and four-dimensional QED in the cases with p=1 and p=3,
respectively, and some applications of the realization of these well-studied
quantum field theories are discussed. In particular, the two-dimensional QED
(the Schwinger model) is known to be a solvable theory and we can apply the
powerful field theoretical techniques, such as bosonization, to study the
D-brane dynamics. The tachyon field created by the D9-D9bar strings appears as
the fermion mass term in the Schwinger model and the tachyon condensation is
analyzed by using the bosonized description. In the T-dualized picture, we
obtain the potential between a D0-brane and a D8-D8bar pair using the Schwinger
model and we observe that it consists of the energy carried by fundamental
strings created by the Hanany-Witten effect and the vacuum energy due to a
cylinder diagram. The D0-brane is treated quantum mechanically as a particle
trapped in the potential, which turns out to be a system of a harmonic
oscillator.
As another application, we obtain a matrix theory description of QED using
Taylor's T-duality prescription, which is actually applicable to a wide variety
of field theories including the realistic QCD. We show that the lattice gauge
theory is naturally obtained by regularizing the matrix size to be finite.Comment: 33 pages, Latex, 4 figures, a reference adde
Discriminating among Earth composition models using geo-antineutrinos
It has been estimated that the entire Earth generates heat corresponding to
about 40 TW (equivalent to 10,000 nuclear power plants) which is considered to
originate mainly from the radioactive decay of elements like U, Th and K,
deposited in the crust and mantle of the Earth. Radioactivity of these elements
produce not only heat but also antineutrinos (called geo-antineutrinos) which
can be observed by terrestrial detectors. We investigate the possibility of
discriminating among Earth composition models predicting different total
radiogenic heat generation, by observing such geo-antineutrinos at Kamioka and
Gran Sasso, assuming KamLAND and Borexino (type) detectors, respectively, at
these places. By simulating the future geo-antineutrino data as well as reactor
antineutrino background contributions, we try to establish to which extent we
can discriminate among Earth composition models for given exposures (in units
of kt yr) at these two sites on our planet. We use also information on
neutrino mixing parameters coming from solar neutrino data as well as KamLAND
reactor antineutrino data, in order to estimate the number of geo-antineutrino
induced events.Comment: 24 pages, 10 figures, final version to appear in JHE
Continuous Wavelets on Compact Manifolds
Let be a smooth compact oriented Riemannian manifold, and let
be the Laplace-Beltrami operator on . Say 0 \neq f
\in \mathcal{S}(\RR^+), and that . For , let
denote the kernel of . We show that is
well-localized near the diagonal, in the sense that it satisfies estimates akin
to those satisfied by the kernel of the convolution operator on
\RR^n. We define continuous -wavelets on , in such a
manner that satisfies this definition, because of its localization
near the diagonal. Continuous -wavelets on are analogous to
continuous wavelets on \RR^n in \mathcal{S}(\RR^n). In particular, we are
able to characterize the Hlder continuous functions on by
the size of their continuous wavelet transforms, for
Hlder exponents strictly between 0 and 1. If is the torus
\TT^2 or the sphere , and (the ``Mexican hat''
situation), we obtain two explicit approximate formulas for , one to be
used when is large, and one to be used when is small
Quantum Theory of Noncommutative Fields
Generalizing the noncommutative harmonic oscillator construction, we propose
a new extension of quantum field theory based on the concept of "noncommutative
fields". Our description permits to break the usual particle-antiparticle
degeneracy at the dispersion relation level and introduces naturally an
ultraviolet and an infrared cutoff. Phenomenological bounds for these new
energy scales are given.Comment: LaTeX file, JHEP3.cls, subequations.sty; 12 pages, no figures. Final
version published in JHEP with some references adde
Spin fluctuations in the quasi-two dimensional Heisenberg ferromagnet GdI_2 studied by Electron Spin Resonance
The spin dynamics of GdI_2 have been investigated by ESR spectroscopy. The
temperature dependences of the resonance field and ESR intensity are well
described by the model for the spin susceptibility proposed by Eremin et al.
[Phys. Rev. B 64, 064425 (2001)]. The temperature dependence of the resonance
linewidth shows a maximum similar to the electrical resistance and is discussed
in terms of scattering processes between conduction electrons and localized
spins.Comment: to be published in PR
Moduli and (un)attractor black hole thermodynamics
We investigate four-dimensional spherically symmetric black hole solutions in
gravity theories with massless, neutral scalars non-minimally coupled to gauge
fields. In the non-extremal case, we explicitly show that, under the variation
of the moduli, the scalar charges appear in the first law of black hole
thermodynamics. In the extremal limit, the near horizon geometry is
and the entropy does not depend on the values of moduli at
infinity. We discuss the attractor behaviour by using Sen's entropy function
formalism as well as the effective potential approach and their relation with
the results previously obtained through special geometry method. We also argue
that the attractor mechanism is at the basis of the matching between the
microscopic and macroscopic entropies for the extremal non-BPS Kaluza-Klein
black hole.Comment: 36 pages, no figures, V2: minor changes, misprints corrected,
expanded references; V3: sections 4.3 and 4.5 added; V4: minor changes,
matches the published versio
Loop-Generated Bounds on Changes to the Graviton Dispersion Relation
We identify the effective theory appropriate to the propagation of massless
bulk fields in brane-world scenarios, to show that the dominant low-energy
effect of asymmetric warping in the bulk is to modify the dispersion relation
of the effective 4-dimensional modes. We show how such changes to the graviton
dispersion relation may be bounded through the effects they imply, through
loops, for the propagation of standard model particles. We compute these bounds
and show that they provide, in some cases, the strongest constraints on
nonstandard gravitational dispersions. The bounds obtained in this way are the
strongest for the fewest extra dimensions and when the extra-dimensional Planck
mass is the smallest. Although the best bounds come for warped 5-D scenarios,
for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop
can lead to a bound on the graviton speed which is comparable with other
constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte
- …
