38 research outputs found

    Performance-Based Design Procedure of a Novel Friction-Based Cladding Connection for Blast Mitigation

    Get PDF
    Cladding systems are conventionally designed to provide buildings with environmental protection against wind, temperature, humidity, moisture, etc. Recently, researchers have proposed to leverage these systems to provide additional protection against manmade (e.g., blast) and natural (e.g., earthquakes, hurricanes) hazards. This can be achieved, for example, by redesigning the connection between the cladding and the structural system to provide energy dissipation via friction. While promising, the use of flexible cladding connection has only been considered for singular hazards. In this study, the authors propose a novel semi-active damping system to connect the cladding to the structure via a variable friction mechanism. By varying the normal force applied on friction plates through a system of adjustable toggles, it is possible to mitigate vibrations over a wide frequency range, therefore enabling mitigation of different types of hazards (i.e. to achieve multi-hazard resistance). In its passive in-situ mode, the device is designed to provide very high stiffness and friction resistance to mitigate the effects of blast. The objective of this paper is to enable a holistic integration of said device within the structural design process by developing a performance-based design procedure. The study will focus on the passive in-situ mode of the device, which will provide a stepping stone for the development of performance-based design procedures for its semi-active (i.e. actuated) capabilities. The proposed performance-based design procedure consists of the following: 1) determine the design performance criteria, including the blast properties and allowable connection gap between the cladding and structure; 2) select design properties for the cladding connection, including stiffness and damping; and 3) design a rubber impact bumper located between the structure and the cladding in order to mitigate slamming of the cladding into the structure for very high blast loads

    Criteria for the use of omics-based predictors in clinical trials: Explanation and elaboration

    Get PDF
    High-throughput 'omics' technologies that generate molecular profiles for biospecimens have been extensively used in preclinical studies to reveal molecular subtypes and elucidate the biological mechanisms of disease, and in retrospective studies on clinical specimens to develop mathematical models to predict clinical endpoints. Nevertheless, the translation of these technologies into clinical tests that are useful for guiding management decisions for patients has been relatively slow. It can be difficult to determine when the body of evidence for an omics-based test is sufficiently comprehensive and reliable to support claims that it is ready for clinical use, or even that it is ready for definitive evaluation in a clinical trial in which it may be used to direct patient therapy. Reasons for this difficulty include the exploratory and retrospective nature of many of these studies, the complexity of these assays and their application to clinical specimens, and the many potential pitfalls inherent in the development of mathematical predictor models from the very high-dimensional data generated by these omics technologies. Here we present a checklist of criteria to consider when evaluating the body of evidence supporting the clinical use of a predictor to guide patient therapy. Included are issues pertaining to specimen and assay requirements, the soundness of the process for developing predictor models, expectations regarding clinical study design and conduct, and attention to regulatory, ethical, and legal issues. The proposed checklist should serve as a useful guide to investigators preparing proposals for studies involving the use of omics-based tests. The US National Cancer Institute plans to refer to these guidelines for review of proposals for studies involving omics tests, and it is hoped that other sponsors will adopt the checklist as well. © 2013 McShane et al.; licensee BioMed Central Ltd
    corecore