99 research outputs found

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Precision measurement of the B0 meson lifetime using B0 → J/ψ K∗0 decays with the ATLAS detector

    Get PDF
    Abstract A measurement of the B0B^{0} B 0 meson lifetime using B0J/ψK0 B^{0} \rightarrow J/\psi K^{*0} B 0 → J / ψ K ∗ 0 decays in data from 13  TeV\text {TeV} TeV proton–proton collisions with an integrated luminosity of 140 fb1 140~\mathrm {fb^{-1}} 140 fb - 1 recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is τ=1.5053±0.0012 (stat.)±0.0035 (syst.) ps. \tau = 1.5053\pm 0.0012~\mathrm {(stat.)} \pm 0.0035~\mathrm {(syst.)~ps}. τ = 1.5053 ± 0.0012 ( stat . ) ± 0.0035 ( syst . ) ps . The average decay width extracted from the effective lifetime, using parameters from external sources, is Γd=0.6639±0.0005 (stat.)±0.0016 (syst.)±0.0038 (ext.) ps1,\begin{aligned} \Gamma _d = 0.6639\pm 0.0005~\mathrm {(stat.)} \pm 0.0016~\mathrm {(syst.)}\\ \pm 0.0038~\text {(ext.)} \text {~ps}^{-1}, \end{aligned} Γ d = 0.6639 ± 0.0005 ( stat . ) ± 0.0016 ( syst . ) ± 0.0038 (ext.) ps - 1 , where the uncertainties are statistical, systematic and from external sources. The earlier ATLAS measurement of Γs\Gamma _s Γ s in the Bs0J/ψϕB^{0}_{s} \rightarrow J/\psi \phi B s 0 → J / ψ ϕ decay was used to derive a value for the ratio of the average decay widths Γd\Gamma _d Γ d and Γs\Gamma _s Γ s for B0B^{0} B 0 and Bs0B^{0}_{s} B s 0 mesons respectively, of ΓdΓs=0.9905±0.0022 (stat.)±0.0036 (syst.)±0.0057 (ext.). \frac{\Gamma _d }{\Gamma _s } = 0.9905\pm 0.0022~\text {(stat.)} \pm 0.0036~\text {(syst.)} \pm 0.0057~\text {(ext.)}. Γ d Γ s = 0.9905 ± 0.0022 (stat.) ± 0.0036 (syst.) ± 0.0057 (ext.) . The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the B0B^{0} B 0 meson to date. </jats:p

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Deep generative models for fast photon shower simulation in ATLAS

    Get PDF
    The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques

    Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with charged leptons and jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy right-handed Majorana or Dirac neutrinos NR and heavy right-handed gauge bosons WR is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (“resolved” channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (“boosted” channel). The events are selected from pp collision data at the LHC with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at √s = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy righthanded WR boson and NR plane. The excluded region extends to about m(WR) = 6.4 TeV for both Majorana and Dirac NR neutrinos at m(NR) < 1 TeV. NR with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at m(WR) = 4.8 TeV for the Majorana neutrinos, and limits of m(NR) up to 3.6 TeV for m(WR) = 5.2 (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered
    corecore